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An organic solution-processable functionalized graphene hybrid material with oligothioph-
ene (6THIOP-NH-SPFGraphene) has been synthesized. The thermogravimetry analysis data
shows that the hybrid is more stable than its parent graphene oxide as observed with an
increased onset temperature. Ultraviolet-visible absorption and fluorescence emission
data show that the attachment of the electron-acceptor group (graphene oxide sheet) onto
the oligothiophene molecules results in an improved absorption than its parent compound
in the whole spectral region and an efficient quenching of photoluminescence. The optical
limiting properties were studied by using the open-aperture Z-scan measures at 532 nm,
and the results show that 6THIOP-NH-SPFGraphene demonstrated a superior optical limit-

ing effect, better than that of the benchmark optical limiting material Ceo.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Graphene—one-atom-thick two-dimensional (2D) layers of
sp>-hybridized carbon—exhibits remarkable electronic [1-3],
optical [4,5], magnetic [6,7] and mechanical [8,9] properties
that could make them useful in a variety of applications. This
2D carbon network is the fundamental building block of other
carbon-based materials, such as OD fullerenes, 1D carbon
nanotubes and 3D graphite. With intensive studies for many
exceptional properties and applications of several other
forms of sp®-hybridized carbon including carbon nanotube
[10] and fullerene [11], it is naturally expected that graphene
is prompting studies for many nanoelectronic and optoelec-
tronic devices and as nanoscale building blocks for new
nanomaterials. So far, various microelectrical devices, such
as field-effect transistors [12], ultracapacitors [13], ultrasensi-
tive sensors [14] and organic photovoltaic device [15] have
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been reported. But perfect graphene itself does not exist and
its solubility and/or processability come as the first issue for
many perspective applications of graphene-based materials.
One of the most important means to further expand their po-
tential is to functionalize their surfaces. Up to now, chemical
functionalization of graphene has been focusing on improv-
ing its solubility/processability in both water and organic sol-
vents using different soluble groups [16-19]. But solution-
processable multifunctional graphene hybrid materials to
take advantages of both the superior properties of graphene
and the functionalizing material have been largely
unexplored.

Polythiophenes and oligothiophenes possess extensive n-
electron delocalization along the molecular backbone and
are well known as high hole mobility materials, which makes
them interesting for various optoelectronic applications [20-
24]. Owing to the low resonance energy of the thiophene het-
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erocycle [25-27], oligothiophenes have found utility in a wide
range of nonlinear optical (NLO) materials [28-30]. Dipolar
push-pull chromophores, which involve a donor and acceptor
group, have been widely investigated for their NLO [31-35]
and other optoelectronic properties [21,36,37]. On the other
side, the presence of oxygen-containing groups in graphene
oxide makes it strongly hydrophilic. But these groups can be
readily used to functionalize graphene sheets. Thus, it would
be expected that combining electron-donor molecules such
as polythiophenes or oligothiophenes with the electron-
acceptor molecule graphene would generate an interesting
push-pull hybrid, potentially with good optoelectronic prop-
erties. As excellent acceptor materials like carbon nanotube
and fullerene, many donor-acceptor systems based on them
with excellent optoelectronic properties have been reported
[38-40], but there has no report of such thiophene-based func-
tionalized graphene material up to now. In this paper, we re-
port the synthesis, characterization and photophysical
properties of an organic solution-processable functionalized
graphene (SPFGraphene) hybrid material with oligothioph-
ene, and furthermore, a superior optical limiting property
has been observed for this graphene-thiophene hybrid.

2. Experimental
2.1. Materials and reagents

All reactions and manipulations were carried out under argon
(Ar) atmosphere with the use of standard Schlenk techniques.
Tetrahydrofuran (THF) and diethyl ether were distilled from
Na/benzophenone under Ar atmosphere. N,N,N’,N’-tetra-
methylethylenediamine (TMEDA) was dried over CaH and dis-
tilled. All starting materials were purchased from commercial
suppliers (Alfa Aesar and Aldrich) and used without further
purification. Graphene oxide was prepared using our modified
Hummers method [15,44,45].

2.2. Instruments and measurements

The solution 'H and *C Nuclear Magnetic Resonance (NMR)
spectra were recorded on a Bruker AV400 Spectrometer. 3C
cross-polarisation/magic angle spinning (CP/MAS) NMR spec-
tra were recorded on a Varian Infinity plus-400 spectrometer
operating at 100.52 MHz using a 4 mm rotor spinning at
12 kHz with 'H decoupling. High resolution matrix-assisted
laser desorption/ionization (MALDI) spectra were collected
with a Fourier transform-ion cyclotron resonance mass spec-
trometer instrument (Varian 7.0T FTICR-MS). Elemental anal-
yses were performed on a Thermo Electron Flash EA 1112
elemental analyzer. Fourier transform infrared (FTIR) spectra
were obtained with a Bruker TENSOR 27 instrument. All infra-
red (IR) samples were prepared as thin films using spectro-
scopic grade KBr. Raman spectra were measured by a
Renishaw inVia Raman microscope at room temperature with
the 514 nm line of an Ar ion laser as an excitation source.
Thermogravimetry analysis (TGA) curves were recorded on a
NETZSCH STA 409PC instrument under purified nitrogen gas
flow with a 5°C/min heating rate. Ultraviolet-Visible (UV-
Vis) spectra were obtained with a JASCO V-570 spectropho-

tometer. Fluorescence spectra were obtained with a Fluoro-
Max-P instrument.

The open-aperture Z-scan experiments were preformed
with linearly polarized 5 ns pulses at 532 nm generated from
a frequency doubled Q-switched Nd:YAG laser. The spatial
profiles of the pulses are of nearly Gaussian form after the
spatial filter. The pulses were split into two parts: the re-
flected pulse was used as reference, and we focused the trans-
mitted pulse onto the sample by using a 25-cm focal length
lens. The input pulse energy was 23 pJ. The sample was
placed at the focus where the spot radius of the pulses was
about 30 um. The reflected and transmitted pulse energies
were measured simultaneously with two energy detectors
(Molectron J3S-10). C¢o was employed as a standard. To com-
pare optical limiting effect, all of the sample concentrations
were adjusted to have the same linear transmittance of 65%
at 532 nm in 1-mm-thick cells. For the controlled blend sam-
ple, both the solutions of 6THIOP in o-dichlorobenzene
(ODCB) and graphene oxide in N,N-dimethylformamide
(DMF) were adjusted to have the same linear transmittance
of 65% at 532 nm before mixed together.

2.3.  Synthesis of 2-bromo-3-octyl-5-nitrothiophene

2-Bromo-3-octylthiophene (1.0 g, 3.63 mmol) was dissolved in
THF (2 ml) and acetic anhydride (4 ml) under Ar. The solution
was cooled to —10°C and a mixture of HNO; (65% solution,
1.66 g, 18.15 mmol) and acetic anhydride (3ml) was added
over 15 min. After stirring for 2 h, the mixture was kept in
refrigerator for 12h. An aqueous solution of NaOH (2 M,
50 ml) was added to the reaction mixture at 0°C, and then
after 30 min stirring the mixture was extracted with CH,Cl,
three times. The combined organic layer was washed with
H,0 and brine, dried over Na,SO,4, and evaporated under re-
duced pressure. The crude was purified by column chroma-
tography (silica, petroleum ether) to obtain 2-bromo-3-octyl-
5-nitrothiophene (680 mg, 2.12 mmol, 58%) as a yellow oil.
'H NMR (400 MHz, CHCL,): 7.64 (s, 1H), 2.57 (t, J = 7.6 Hz, 2H),
1.58 (m, 2H), 1.30 (m, 10H), 0.88 (t, ] = 5.8 Hz, 3H). *C NMR
(100 MHz, CHCI3): 6 150.19, 143.18, 128.85, 118.72, 31.83,
29.69, 29.31, 29.27, 29.18, 29.05, 22.67, 14.12.

2.4. Synthesis  of  3,3',3",3",3""-quinqueoctyl-2,5':
27’517:2//,2!):..5 ;:;,2::17:57// ',2”’”-Sexithiophene (3)

TMEDA (0.10 ml, 0.69 mmol.) was added to a solution of quin-
quethiophene 1 (400 mg, 0.46 mmol) in anhydrous THF (20 ml)
under Ar. The solution was cooled to —78°C and n-Buli in
hexane (0.32 ml, 2.9 M, 0.92 mmol) was added dropwise. After
stirring for 3h at —78 °C, ZnCl, in diethyl ether (0.92 ml, 1 M,
0.92 mmol) was added to the stirred solution and the reaction
mixture was stirred for 0.5h and an additional 3h after
removing the cooling bath. In a second flask, 2-bromo-3-oc-
tyl-thiophene (139 mg, 0.51 mmol) and Pd[PPhjs]s (27 mg,
0.023 mmol) were stirred in THF (10 ml) for 10 min under Ar
and then the solution was transferred to the zinc organic
solution. The reaction was then shielded from light and al-
lowed to proceed at 60 °C for 20 h. After cooling to room tem-
perature, it was quenched with water and extracted with
CH,Cl, three times. The combined organic layer was washed
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with H,0 and brine, dried over Na,SO,, and evaporated under
reduced pressure. The crude was purified by column chroma-
tography (silica, petroleum ether) to obtain sexithiophene 3
(224 mg, 0.21mmol, 46%) as an orange solid. 'H NMR
(400 MHz, CHCly): 7.18 (d, J=1.4Hz, 1H), 7.17 (d, J=1.4 Hz,
1H), 7.11 (s, 2H), 6.99 (s, 1H), 6.97 (s, 1H), 6.96 (s, 1H), 6.95 (s,
1H), 6.94 (s, 1H), 2.80 (m, 10H), 1.69 (m, 10H), 1.29 (m, 50H),
0.89 (m, 15H). >*C NMR (100 MHz, CHCls): § 139.90, 139.84,
139.81, 139.64, 139.60, 135.74, 135.67, 134.25, 134.09, 133.90,
130.48, 130.43, 130.27, 130.21, 130.09, 128.74, 128.54, 125.87,
123.60, 123.57, 31.90, 30.68, 30.63, 30.56, 29.62, 29.54, 29.48,
29.43, 29.29, 22.67, 14.12. HRMS (MALDI-FTICR): Calc. for
[M]*, 1054.5674; found, 1054.5669.

2.5.  Synthesis of 5-nitro-3,3’,3",3"',3""-quinqueoctyl-
2,5':2',5":2",2°”:5",2°":5”' 2°”-sexithiophene (4)

TMEDA (0.78 ml, 5.21 mmol.) was added to a solution of
quinquethiophene 1 (3.0g, 3.47 mmol) in anhydrous THF
(40 ml) under Ar. The solution was cooled to —78 °C and n-
Buli in hexane (2.7 ml, 2.9 M, 6.94 mmol) was added drop-
wise. After stirring for 3h at —78°C, ZnCl, in diethyl ether
(6.94 ml, 1M, 6.94 mmol) was added to the stirred solution
and the reaction mixture was stirred for 0.5h and an addi-
tional 3 h after removing the cooling bath. In a second flask,
2-bromo-3-octyl-5-nitrothiophene (1.22g, 3.82mmol) and
Pd[PPh;3], (160 mg, 0.14 mmol) were stirred in THF (20 ml)
for 10 min under Ar and then the solution was transferred
to the zinc organic solution. The reaction was then shielded
from light and allowed to proceed at 60°C for 20 h. After
cooling to room temperature, it was quenched with water
and extracted with CH,Cl, three times. The combined organ-
ic layer was washed with H,O and brine, dried over Na,SO,,
and evaporated under reduced pressure. The crude was puri-
fied by column chromatography (silica, petroleum ether-
CH,Cl, 5:1) to obtain nitrosexithiophene 4 (1.57 g, 1.43 mmol,
41%) as a puce solid. 'H NMR (400 MHz, CHCL): 7.76 (s, 1H),
7.17 (d, J=5.2Hz, 1H), 7.12 (s, 1H), 7.11 (s, 1H), 7.10 (s, 1H),
7.02 (s, 1H), 6.96 (s, 1H), 6.94 (d, J=5.2Hz, 1H), 2.80 (m,
10H), 1.68 (m, 10H), 1.28 (m, 50H), 0.88 (m, 15H). *C NMR
(100 MHz, CHCLy): § 147.96, 140.35, 140.12, 140.02, 139.74,
139.38, 138.95, 136.24, 135.23, 134.46, 133.83, 132.77, 131.5,
131.23, 131.14, 131.03, 130.39, 130.13, 130.05, 129.38, 128.79,
126.22, 125.94, 123.71, 31.90, 31.85, 30.70, 30.62, 30.50, 30.09,
29.62, 29.53, 29.48, 29.42, 29.32, 29.29, 29.21, 22.69, 14.12.
HRMS (MALDI-FTICR): Calc. for [M]*, 1099.5531; found,
1099.5532.

2.6.  Synthesis of 5-amino-3,3’,3”,3””,3""”-quinqueoctyl-
2,5%:2°,5”:2”,2°:5",2””:5”” 2" _sexithiophene (5)

Nitrosexithiophene 4 (480 mg, 0.44 mmol) was dissolved in
ethyl acetate (35 mL) and 10% Pd/C (320 mg) was added. After
two vacuum/H, cycles to replace the air inside with hydrogen,
the mixture was vigorously stirred at room temperature (ca.
20 °C) under ordinary hydrogen pressure (balloon) for 24 h.
The reaction mixture was filtered through Celite and the fil-
trate was concentrated and dried under vacuum to provide
the product. The product was used directly in the next step
without further purification.

2.7.  Synthesis of 6THIOP-NH-SPFGraphene

A mixture of graphene oxide (60 mg), 6THIOP-NH, (400 mg)
and 1,3-diisopropylcarbodiimide (DIC, 0.6 ml) were mixed
with ODCB (40 ml) in a 100 ml round-bottomed flask and
heated to 80 °C for 48 h under Ar and an additional 6 h with
intermittent sonication to give a homogeneous black disper-
sion. After the reaction, the solution was cooled to room tem-
perature, and then poured into ethanol (300 ml) to precipitate
the product. The precipitate was collected by centrifuge at
8000 rpm for 0.5h. The supernatant which contained dis-
solved DIC was discarded. To wash the precipitate thoroughly,
another 100 ml ethanol was added, the mixture was sonicated
for 5 min and then centrifuged at 8000 rpm for 0.5 h to collect
the 6THIOP-NH-SPFGraphene, discarding the supernatant.
The precipitate was washed with ethanol five times again
and then with toluene five times following the above proce-
dure. UV-Vis spectra and thin layer chromatography (TLC)
were used to check the supernatant layer to ensure no 6THI-
OP-NH, existed in the final washing. At last, 50 ml toluene
was added to the black centrifugate and the product was iso-
lated by filtration on a Nylon membrane (0.22 pm) and then
the product was dried under vacuum to yield the hybrid 6THI-
OP-NH-SPFGraphene (71 mg).

3. Results and discussion
3.1.  Synthesis of the materials

The synthesis route for functionalized graphene, 6THIOP-NH-
SPFGraphene, is summarized in Fig. 1. The starting materials,
quinquethiophene 1, were synthesized according to the liter-
ature [41]. Oligothiophenes 3 and 4 were prepared similarly by
utilizing Negishi cross-coupling reaction [42]. Because of the
unstable properties of aminothiophenes [43], the nitrosexithi-
ophene 4 was reduced to 6THIOP-NH, by hydrogenation in
the presence of Pd/C and the product was used directly in
the next step without further purification.

The synthesis of oligothiphene-graphene nanohybrid,
6THIOP-NH-SPFGraphene (Figs. 1 and 2), was carried out
using an amine functionalized oligothiophene (6THIOP-NH,)
and graphene oxide in ODCB following a general synthetic
methodology. The oligothiophene and graphene in the hybrid
6THIOP-NH-SPFGraphene act as a donor and acceptor,
respectively. Large scale and water soluble graphene oxide
was prepared by the modified Hummers method [15,44,45].
Results of atomic force microscopy (AFM), TGA and X-ray dif-
fraction (XRD) characterization have confirmed that this
graphene material can be easily dispersed at the state of
complete exfoliation consisting of almost entire single-lay-
ered graphene sheets in H,O [15,44]. 6THIOP-NH, and graph-
ene oxide molecules are covalently bonded together using
amide bond. Much care has been taken to make sure all
the unreacted 6THIOP-NH, has been removed by repeated
centrifugation and redispersion, and then membrane filtra-
tion and washing. The covalent functionalization of graphene
oxide with oligothiophenes has changed graphene oxide
from hydrophilic to hydrophobic and the hybrid can be
dissolved in organic solvents such as ODCB. This makes it
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Fig. 1 - Synthesis route to 6THIOP-NH-SPFGraphene.

Fig. 2 - Structure of 6THIOP-NH-SPFGraphene.

possible that this graphene hybrid can be homogeneously
dispersed (together with other organic materials) in organic
solvents needed for various organic electronic applications.
Using elemental analysis, the weight fractions of C, H, N,
and S of the 6THIOP-NH-SPFGraphene were determined to
be 67.42%, 5.42%, 0.49% and 6.27%. Based on this, it is esti-
mated that the ratio of the oligomer chain (6THIOP) with
the carbon atoms on graphene is ~1/108.

3.2. Solid-state NMR structural characterization

The 'C CP/MAS NMR spectra of graphene oxide and 6THIOP-
NH-SPFGraphene (Fig. 3) indicate significant structural
change induced by the functionlization of graphene with oli-
gothiophene. In the spectrum of grapheme oxide, the peaks at
61.4 and 71.7 ppm represent the *C nuclei in the epoxide and
hydroxyl groups, respectively [46,47]. The resonance at
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Fig. 3 - *3C CP/MAS NMR spectra with *H decoupling of
graphene oxide and 6THIOP-NH-SPFGraphene.

132.3 ppm belongs to the un-oxidized sp® carbons of the
graphene network and that at 168.2 ppm presumably arises
from the carbonyl groups [46,47]. In the *C NMR spectrum
of 6THIOP-NH-SPFGraphene, the peaks of the *C nuclei in
the epoxide and hydroxyl groups are weak, like the deoxygen-
ation of graphene oxide under alkaline conditions [48], this
can be attributed to the strong dehydration capacity of DIC.
The new peaks from 13.6 to 44.0 ppm can be attributed to
the alkyl of oligothiophenes. The peaks around 130 ppm are
broadened because the new sp? carbons from oligothioph-
enes are introduced. These results clearly indicate that the
new graphene-based materials are formed.

3.3.  Thermal and optical properties

Fig. 4 shows FTIR spectra of 6THIOP-NH-SPFGraphene, 6THI-
OP, and the graphene oxide. The most characteristic features

——6THIOP-NH-SPFGraphene

/

5
v 1636

1576 (amide Il band)
——6THIOP

— graphene oxide

Transmittance / %

s
v, 1731

4000 35|I]O 3IJ|00 25|00 ZOIUCI 15TOIJ 10|00 560
Wavenumber / cm™

Fig. 4 - FTIR spectra of 6THIOP-NH-SPFGraphene, 6THIOP

and graphene oxide. The peak at 1636 cm ™, corresponding

to the C=0 stretch of the amide group, indicating that the

oligothiophene molecules have been covalently bonded to

the graphene oxide via the amide linkage.

of graphene oxide in the FTIR spectra are the characteristic
C=0 stretch of the carboxylic group at 1731 cm™'. The band
present at 1622 cm™’ is attributed to the deformations of
the O-H bond of the strongly intercalated water absorbed by
graphene oxide, but may also contains the stretch of aromatic
C=C bond [16,18,49]. Deformation of the C-O bond is observed
as the intense band present at 1064 cm™*. After covalent func-
tionalization with oligothiophene, the peak of deformation of
the C-O bond shifts to 1072. The peak present at 1454 is as-
signed to the bending vibration of CH,. The new peak at
1643 cm ™! in the spectrum of 6THIOP-NH-SPFGraphene corre-
sponds to the amide I band, which is carbonyl stretching of
the amide. The peak at 1576 cm™* can be attributed to the
amide II band, which is the coupling of the C-N stretching
with the N-H deformation vibration [16]. We also observed
the asymmetric C-H stretch at 2919 cm™~* and symmetric C-
H stretch at 2849 cm™" of the alkyl groups. These results
clearly indicated that the 6THIOP-NH, molecules had been
covalently bonded to the graphene oxide via the amide
linkage.

Fig. 5 shows Raman spectra of graphene oxide and 6THI-
OP-NH-SPFGraphene. The graphene oxide shows an intense
tangential mode (G band) at 1594 cm™?, with a disordered-in-
duced peak (D band) at 1362 cm™~*. The 6THIOP-NH-SPFGraph-
ene nanohybrid mainly shows three peaks at 1589, 1372 and
1449 cm™. The peak at 1449 cm™* should be assigned to the
CH, scissoring mode of the alkyl of oligothiophene. Compar-
ing with the graphene oxide, the peaks at 1589 and
1372 cm™! can be attributed to the G and D bands of the
graphene sheets, which are shifted by 5 and 10 cm™, respec-
tively. This relatively large shift sufficiently suggests a strong
interaction between the oligothiophene molecules and the
graphene sheets.

The thermal behaviors of the graphene oxide and 6THIOP-
NH-SPFGraphene hybrid were investigated by TGA under
nitrogen atmosphere (Fig. 6). The initial weight loss of graph-
ene oxide below 150°C is 13%, which is ascribed to the
elimination of adsorbed water. The weight loss (5%) of 6THI-
OP-NH-SPFGraphene below 150 °C, much smaller than that
for graphene oxide, could be due to adsorbed solvent too
[50]. A large weight loss around 200 °C owes to the removal

—— graphene oxide
= sseses BTHIOP-NH-SPFGraphene

Scattering intensity / a.u.

*assssssesssnsann e e

1000 1200 1400 1600 1800 2000
Raman shift/ cm™

Fig. 5 - Raman spectra of graphene oxide and 6THIOP-NH-

SPFGraphene excited at 514 nm.
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Fig. 6 - TGA curves of 6THIOP-NH-SPFGraphene, 6THIOP
and graphene oxide. The 6THIOP-NH-SPFGraphene hybrid
shows increased onset temperature compared with

graphene oxide, indicating that new chemical bonds are
formed between the graphene sheet and oligothiophene.

of the oxygen functional groups from the graphene oxide lay-
ers [46,51]. In this stage, graphene oxide loses 34% of its
weight, and the 6THIOP-NH-SPFGraphene hybrid loses only
10%. For the 6THIOP, a weight loss of 83% occurred at an onset
temperature of 444 °C, which is due to the decomposition of
the organic functional groups. The 6THIOP-NH-SPFGraphene
hybrid shows a mass loss, starting at an onset temperature
of 386 °C, illustrating the oxidative decomposition of the or-
ganic functional groups and further carbonization of the
graphene backbone [52,53]. The increased onset temperature
of the 6THIOP-NH-SPFGraphene compared with its parent
graphene oxide indicate that new chemical bonds are formed
and oligothiophenes are chemically bonded onto graphene
sheets. These results indicate that the 6THIOP-NH-SPFGraph-
ene hybrid is thermally more stable than graphene oxide.
Fig. 7 shows UV-Vis absorption spectra of 6THIOP-NH-SPF-
Graphene, 6THIOP and graphene oxide. The spectra of 6THI-

0.25 =+=:6THIOP-NH-SPFGraphene
A e e = 6THIOP
—— graphene oxide

0.20 P
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"}
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L T & T . T . T Lf 1
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Wavelength / nm

Fig. 7 - UV-Vis absorption spectra of graphene oxide
(5.9 mg L") in aqueous solution, 6THIOP (3.0 mg L) and
6THIOP-NH-SPFGraphene (3.8 mg L") in ODCB.

OP-NH-SPFGraphene and 6THIOP were observed in the
ODCB solution and that of graphene oxide in water. The spec-
tra are plotted in the wavelength range from 300 to 800 nm
because of the impossibility of properly compensating for
the strong absorption of ODCB at shorter wavelength. Graph-
ene oxide shows a broad absorption with continuously
decreasing intensity ranged to 800 nm. The 6THIOP shows a
strong broad n-n* absorption band at 411 nm. 6THIOP-NH-
SPFGraphene shows an absorption band at around 412 nm,
derived from the oligothiophene group, and has a very broad
absorption in the whole spectral region, which suggests a
charge-transfer interaction between the oligothiophene and
graphene units [21,37].

The prevention of aggregation is of particular importance
for graphene processability and applications because most
of their attractive properties are only associated with individ-
ual graphene sheets. Solution-phase UV-Vis spectroscopy has
been reported to demonstrate a linear relationship between
the absorbance and the relative concentrations of functional-
ized graphene in THF, obeying Beer’s law at low concentra-
tions, and has been used to determine the solubility of
functionalized graphene [54]. Fig. 8 shows the absorption
spectra of solutions of 6THIOP-NH-SPFGraphene with differ-
ent concentrations. The absorption values at 412 nm were
plotted against concentrations as shown in Fig. 8. Applying
the Beer’s law, we estimated the effective extinction coeffi-
cient of the 6THIOP-NH-SPFGraphene from the slope of the
linear least-squares fit to be 0.041 L. mg ' cm™?, with an R va-
lue of 0.999. The absorbance of solutions of 6THIOP-NH-SPF-
Graphene at other wavelengths were in line with the Beer’s
law too. These linear relationship results demonstrated that
the hybrid had been homogeneously dispersed in the ODCB.

In order to probe excited-state interactions of graphene
and oligothiophene in the hybrid, fluorescence spectra of
6THIOP-NH-SPFGraphene and 6THIOP were compared in
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Fig. 8 - Concentration dependence of UV-Vis absorption
spectra of 6THIOP-NH-SPFGraphene in ODCB
(concentrations are 9.2, 11.9, 15.3, 18.7, 20.4, 23.1 and

25.7 mg L%, from a-g, respectively). Shown in the insets are
the plots of optical density at 412 nm versus concentration.
The straight lines are a linear least-squares fit to the data,
indicating the hybrid 6THIOP-NH-SPFGraphene was
dissolved homogeneously in the solvent.
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Fig. 9 - Fluorescence spectra of 6THIOP-NH-SPFGraphene
(Zex = 411 nm) and 6THIOP (Jx = 411 nm) in ODCB with the
same absorbance value (Abs = 0.21).

Fig. 9. Upon excitation at 411 nm, the solution of 6THIOP-NH-
SPFGraphene exhibits about 98% quenching of the fluores-
cence emission bands at 522 nm, as compared to that of 6THI-
OP at a matching absorption (0.21). The observed almost
completely luminescence quenching indicated that there
was a strong interaction between the excited state of 6THIOP
and graphene moieties in the hybrid. Possible pathways for
the fluorescence quenching of the excited 6THIOP may be
attributed to two possible competitive processes: photoin-
duced electron transfer (PET) and energy transfer (ET). Similar
luminescence quenching has been observed for the hybrids of
Ceo with oligothiophene and PET and ET mechanism has been
demonstrated for these hybrids [55-57]. Molecular orbital the-
ory and experimental results have shown that closed-cage
carbon structures such as fullerenes and carbon nanotubes
are favorable electron acceptors because of their unique =-
electron system when the two moieties are connected di-
rectly [58]. Thus, after photoexcitation, the intramolecular do-
nor-acceptor interaction between the two moieties of
oligothiophene and graphene in our 6THIOP-NH-SPFGraph-
ene nanohybrid may have a charge transfer from the photo-
excited singlet oligothiophene to graphene moiety, and this
results in the observed fluorescence quenching and energy
releasing.

3.4.  Optical limiting properties

Dipolar push-pull chromophores with Cgo and carbon nano-
tubes derivatives as acceptor have excellent optical limiting
properties with the efficient energy and/or electron transfer
upon photoexcitation [32,59-61]. It would be both interesting
and important to investigate the optical limiting properties
of the 6THIOP-NH-SPFGraphene hybrid. Optical limiters are
materials that strongly attenuate intense optical beams,
potentially dangerous optical beams, while exhibiting high
transmittance for low-intensity ambient light levels. They
can be used for the protection of human eyes, optical ele-
ments and optical sensors from intense laser pulses.

Fig. 10 shows open-aperture Z-scan [62] results of 6THIOP-
NH-SPFGraphene (in ODCB), 6THIOP-NH, (in ODCB), graphene
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Fig. 10 - Open-aperture Z-scan results of 6THIOP-NH-
SPFGraphene, 6THIOP, graphene oxide, the controlled
sample (6THIOP and graphene oxide), and Cgp with the
same linear transmittance of 65% to 5 ns, 532 nm optical
pulses.

oxide (in DMF), a controlled blend sample (1:1, v/v) of 6THIOP
(in ODCB) with graphene oxide (in DMF) and Cg (in toluene).
Because of the poor solubility of graphene oxide in ODCB, a
component (ODCB and DMF) solvent in the controlled blend
sample was used. The optical limiting properties of the solu-
tions of these materials were investigated using 532 nm
pulsed laser irradiation, and Cgo Wwas employed as a standard.
To compare the optical limiting effect, all of the sample con-
centrations were adjusted to have the same linear transmit-
tance of 65% at 532 nm in 1-mm-thick cells.

The open-aperture Z-scan measures the transmittance of
sample as it translates through the focal plane of a tightly fo-
cused beam. As the sample is brought closer to focus, the
beam intensity increases and nonlinear effect increases,
which will lead to a decreasing transmittance for two-photon
absorption (TPA) and nonlinear scattering. As shown in
Fig. 10, the 6THIOP-NH-SPFGraphene had the largest dip
among the transmittance curves of the studied materials:
6THIOP-NH-SPFGraphene, 6THIOP, graphene oxide, the con-
trolled sample and Cgo. Therefore, 6THIOP-NH-SPFGraphene
demonstrated much better optical limiting properties com-
pared with the controlled blend sample and the individual
components (6THIOP and graphene oxide) of the hybrid,
and even better than the benchmark material Cgo. Graphene
oxide may have TPA while using 532 nm pulsed laser irradia-
tion in our experiments because the linear absorption peak of
graphene oxide below 300 nm [63]. Considering the covalent
donor-acceptor structure and the efficient fluorescence
quenching of this nanohybrid above, we believe that the
PET and/or ET from electron donor 6-THIOP to acceptor graph-
ene should play an important role for the much-enhanced
optical limiting performance [61]. Furthermore, in the process
of Z-scan experiments as shown in Fig. 10, enhanced scatter-
ing could be also observed for the sample of 6THIOP-NH-SPF-
Graphene moving towards the focus of the laser. This implied
that the observed Z-scan curve was also influenced by nonlin-
ear scattering. Therefore, the much-enhanced optical limiting
performance of 6THIOP-NH-SPFGraphene should arise from a
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combination of PET and/or ET, TPA and nonlinear scattering
mechanisms. Similar results have been observed the hybrid
materials of carbon nanotubes and graphene with porphyrins
[31,32,63].

4, Conclusions

We have reported the first covalently bonded and organic sol-
uble graphene hybrid with oligothiophenes. Solid **C NMR,
FTIR and Raman spectra confirmed the covalent functionali-
zation of graphene. Attachment of oligothiophenes signifi-
cantly improved its solubility and dispersion stability of the
graphene-based material in organic solvents. In this donor-
acceptor nanohybrid, fluorescence of photoexcited 6THIOP
was effectively quenched through a possible PET and/or ET
process. A superior optical limiting effect, better than the
benchmark optical limiting material Cgp and the controlled
sample was observed. PET and/or ET mechanism is believed
to play a significant role for its superior optical limiting per-
formance. With the abundant and highly pure functionalized
graphene material readily available, unique structure and
excellent electronic properties, we fully expect this organic
solution-processable functionalized graphene material may
bring a competitive entry into the realm of light harvesting
and solar energy conversion materials for optoelectronic de-
vices, which is current underway.
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