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Throughout biology, amyloids are key structures in both functional
proteins and the end product of pathologic protein misfolding.
Amyloids might also represent an early precursor in the evolution of
life because of their small molecular size and their ability to self-
purify and catalyze chemical reactions. They also provide attractive
backbones for advanced materials. When p-strands of an amyloid
are arranged parallel and in register, side chains from the same
position of each chain align, facilitating metal chelation when the
residues are good ligands such as histidine. High-resolution struc-
tures of metalloamyloids are needed to understand the molecular
bases of metal-amyloid interactions. Here we combine solid-state
NMR and structural bioinformatics to determine the structure of a
zinc-bound metalloamyloid that catalyzes ester hydrolysis. The pep-
tide forms amphiphilic parallel g-sheets that assemble into stacked
bilayers with alternating hydrophobic and polar interfaces. The hy-
drophobic interface is stabilized by apolar side chains from adjacent
sheets, whereas the hydrated polar interface houses the Zn**-bind-
ing histidines with binding geometries unusual in proteins. Each
Zn?* has two bis-coordinated histidine ligands, which bridge adja-
cent strands to form an infinite metal-ligand chain along the fibril
axis. A third histidine completes the protein ligand environment,
leaving a free site on the Zn?* for water activation. This structure
defines a class of materials, which we call metal-peptide frame-
works. The structure reveals a delicate interplay through which
metal ions stabilize the amyloid structure, which in turn shapes
the ligand geometry and catalytic reactivity of Zn?*.
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etals are essential in enzyme catalysis and protein folding

(1). Naturally occurring metalloenzymes possess complex
3D folds to coordinate the metal center with the appropriate
geometries for catalysis. A classical example is carbonic anhy-
drase, where a zinc ion is coordinated by three histidines from
two B-strands and a hydroxide ion to catalyze the hydration of
carbon dioxide to form bicarbonate (2). It has been hypothesized
that such enzyme structure and function might have evolved
from short peptides that self-assemble into repeat structures (3—
7), in which the metal ions played a significant role by stabilizing
the amyloid structure as well as catalyzing reactions. Cu?* and
Zn>* ions also bind amyloid proteins involved in neurodegen-
erative disorders at physiological concentrations of these ions (8-
14). Structure determination of metal-bound amyloids is thus
important for a fundamental understanding of the structural
principles of amyloid formation.

NMR spectroscopy has been used to investigate metalloprotein
structures by exploiting distance-dependent paramagnetic relaxation
enhancement, contact shifts, and pseudocontact shifts of para-
magnetic ions such as Cu** and Co** (15-17). However, this ap-
proach cannot be applied to diamagnetic metals such as Zn>*, and
direct observation of these quadrupolar nuclei is limited by low
sensitivity (18). Zinc, in particular, is abundant and essential in biology
(19); thus, it is important to develop a systematic NMR approach for
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characterizing the inorganic cores of zinc metalloproteins. Solid-state
NMR (SSNMR) is the method of choice for structure determination
of amyloid fibrils, and high-resolution structures of a number of fi-
brils have been reported (20-27). However, the metal coordination
geometries of amyloid fibrils have not been reported.

Here we present a solid-state NMR investigation of the struc-
ture of a designed zinc-binding amyloid fibril that catalyzes ester
hydrolysis (5, 28). We have determined the zinc coordination ge-
ometry and oligomeric structure of this fibril, which is formed by
an amphipathic heptapeptide containing a pair of histidines. In-
termolecular distance restraints show that the peptides assemble into
hydrogen-bonded parallel in-register p-sheets with alternating dry
and wet interfaces between adjacent B-sheets. The hydrophobic in-
terface is stabilized by apolar side chains, whereas the hydrated polar
interface houses an array of Zn**-binding histidines. The N and
3C chemical shifts indicate that the two histidines in each peptide
adopt singly Nd1-coordinated and doubly N&1, Ne2-coordinated
structures at equal populations, whereas measured side chain con-
formations reveal how the imidazole rings protrude from the p-sheet
plane. Combining these solid-state NMR constraints with a struc-
tural bioinformatics search, we show that each zinc ion is co-
ordinated by three histidine nitrogens from two adjacent strands, and
half of all histidines bridge Zn”" jons, forming a metal-imidazolate
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chain that is orthogonal to the direction of the B-strands. This study
represents a structure determination of a metalloamyloid and
demonstrates a systematic approach for solving the high-resolution
structures of diamagnetic metalloproteins from SSNMR data.

Results and Discussion

We recently showed that an amphiphilic heptapeptide, Ac-
IHIHIQI-CONH,, assembles into micron-length fibrils with high
esterase activity (28). The catalytic activity is strictly zinc-dependent,
requires histidines at positions 2 and 4, and is enhanced by Gln at
position 6 and by p-branched residues at odd-numbered positions.
To simplify NMR assignments, we replaced the isoleucines in
positions 3 and 5 with Val and Leu, respectively. These substitu-
tions are expected to be well tolerated, given previous work on
closely related peptides (5, 28). Indeed, the resulting peptide Ac-
IHVHLQI-CONH, (termed HHQ here) chosen for the SSNMR
study forms fibrils that are very similar morphologically and
chemically to the ones produced by Ac-IHIHIQI-CONH,. The
peptides were fibrilized at pH 8 with varying Zn**:peptide molar
ratios. Transmission electron microscopy (TEM) and thioflavin T
fluorescence data confirm that HHQ forms homogeneous fibrils
with widths of 20-30 nm, and the Zn>*-bound fibrils catalyze
p-nitrophenylacetate hydrolysis with an initial rate that fits to k¢, =
0.034 s7! and Ky = 509 pM (Fig. 14 and SI Appendix, Fig. S1),
similar to the activity of the parent peptide.

HHQ Assembles into a Class 1 Steric Zipper with a Parallel Orientation
of Adjacent Hydrogen-Bonded Strands. The conformation and in-
termolecular packing of HHQ fibrils are determined from 2D
13C_13C correlation spectra (Fig. 1 B-E and SI Appendix, Fig. S2
A-C). With 50-ms °C spin diffusion based on dipolar-assisted
rotational resonance (DARR) mixing (29), intraresidue cross
peaks with characteristic p-strand >C chemical shifts are ob-
served for all labeled residues. Zn>" binding perturbed the
chemical shifts of V3 and LS5, suggesting this segment to be the
center of the zinc-binding domain (Fig. 1B). With 300-ms com-
bined R2,"-driven (CORD) mixing (30) under echo detection
to simplify the spectrum, a mixed labeled fibril (sample 4, ST
Appendix, Table S1) shows strong intermolecular cross peaks be-
tween V3 Ca and V3 C’ and between L5 Ca and LS C' (Fig. 1C),
indicating parallel-in-register (PIR) packing of the p-strands. In
addition, an intermolecular L5 Ca—V3 C’ cross peak is detected,
but only a very weak V3 Ca-L5 C’ cross peak is present. These
L5-V3 peaks account for ~20% of the total intensity and may
result from a small amount of parallel-out-of-register strands or

antiparallel strands. Such minor structural polymorphism has been
observed for various amyloids (31), and we consider only the
predominant conformation of the PIR p-strands below. This in-
terpretation is also consistent with the experimentally measured
binding stoichiometry, which is 0.75 Zn** per peptide, somewhat
less than 1.0 Zn* per peptide, suggesting the presence of a minor
conformer with reduced affinity for Zn>*.

Having established the parallel registry of adjacent strands in the
predominant conformer, we examined mixtures of peptides with
different *C, '>N-labeled residues to determine whether inter-
acting sheets were oriented in a parallel or antiparallel fashion
across the non-hydrogen-bonded sheet interface. Using samples
9 and 10 (SI Appendix, Table S1), we observed exclusively in-
termolecular cross peaks between V3 and 17 side chains and be-
tween I1 and LS side chains in 15-ms 2D *C-'*C proton-assisted
recoupling (PAR) spectra (32) (Fig. 1D), whereas no L5-17 side
chain contacts were detected. Thus, two adjacent p-sheets stack
with the hydrophobic side chains facing each other and with the
strands in an antiparallel orientation (Fig. 1E). This cross-f
structure, with parallel packing of p-strands within each sheet and
antiparallel packing between sheets, has been termed class 1 steric
zippers (33). We speculate that it is stabilized by the C2 symmetry
along the fibril axis, which allows two adjacent sheets to slide
relative to each other to optimize the side chain packing.

His2 and His4 Side Chains of HHQ Each Have Two Chemically Distinct
Structures in a 1:1 Molar Ratio. To determine the Zn>" coordination
structure, we measured the chemical shifts and conformation of
the two crucial histidines. Without Zn>*, His2 and His4 show *C and
5N chemical shifts that are diagnostic of a neutral t-tautomer (34)
(Figs. 2 and 3). Zn** binding caused pronounced spectral changes,
where each His now exhibits two sets of chemical shifts (S
Appendix, Table S2). The 250-ppm °N peak of unprotonated ni-
trogen is replaced by two "N peaks at 207-211 ppm, which are
characteristic of Zn®" coordination (35, 36). One set of signals has a
174-ppm Ne2 chemical shift, indicating N&1-only coordination,
whereas the other set shows both N&1 and Ne2 peaks at ~210 ppm,
indicating double coordination. The two coordination structures
have equal intensities, but His2 retains ~15% unbound signals,
which is likely related to the minor conformation described above.

The equal presence of singly and doubly coordinated histidines
is unexpected because naturally occurring Zn>*—His complexes in
proteins predominantly involve singly coordinated histidines. We
determined the histidine rotamers by measuring Co—N&1 and
C52-Na distances using frequency-selective *C->N rotational
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Fig. 1. Zn%**-bound HHQ peptides form parallel f-strands that stack in antiparallel sheets. (4) TEM image of Zn**-bound fibrils. (B-D) The 2D '3C-"3C cor-
relation spectra of HHQ fibrils. (B) The 50-ms DARR spectra of IVL-labeled fibrils without (orange) and with (black) Zn?*. (C) The 300-ms CORD spectrum of a
Zn**-bound mixed fibril. Most intermolecular backbone cross peaks indicate parallel-in-register strands (red) with a minor component adopting other packing
(blue). (D) The 15-ms PAR spectra of Zn**-bound mixed fibrils, showing V3-17 and 11-L5 intermolecular cross peaks. (E) Schematic of parallel -strands in each
sheet and two neighboring sheets with opposite strand orientations. Dashed lines indicate intermolecular contacts that have been observed from the 2D
correlation spectra, with thicker lines denoting stronger cross peaks or shorter distances.
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Fig. 2. (A and B) Histidine structures in HHQ fibrils from chemical shifts and (C

and D) distance restraints. (A and B) The 2D '*C-'3C and '>N-'3C correlation
spectra of His4-labeled and His2-labeled HHQ fibrils. The orange spectrum in A is
that of the apo sample, whereas the rest correspond to Zn**-bound fibrils. Singly
and doubly coordinated histidine peaks are assigned in blue and red, re-
spectively. (C and D) C82-Na (solid line) and Ca-N&1 (dashed line) REDOR
dephasing curves of His4 and His2 to determine the side chain conformation.
Representative REDOR spectra and the histidine chemical structure are shown.

echo double resonance (REDOR) (37). The normalized REDOR
intensities (S/Sy) as a function of mixing time (Fig. 2 C and D)
indicate a Ca—N&1 distance of 3.6-3.9 A for both histidines, which
constrains the y, angle to trans. However, the C62-Na distances
differ. For His2, the C52-Na distance is shorter in the singly co-
ordinated form (His,®) than the doubly coordinated form (HiszD%),
indicating an mt rotamer for His,® and a # rotamer for His,
(SI Appendix, Figs. S3 and S4), whereas the opposite rotamer
combination is found for His4.

Determination of the Structure of the Zn?*-Binding Site. The above
NMR data reveal the following structural features of the Zn-
bound HHQ fibrils: (i) PIR packing of B-strands in each sheet;
(i) all His residues are coordinated to Zn** via N&1, and in ad-
dition, half of the His residues are also coordinated to Zn>* via N&2
(these singly and doubly Zn-coordinated His residues are equally
populated); (i) distinct His rotamers exist at positions 2 and 4 and
depend on the coordination number; and (iv) Zn>* binds in a
1:1 metal ion/peptide ratio. Thus, on average, each Zn** is co-
ordinated by three His N ligands (two N&1 and one Ne2).

These features allow for two possible Zn coordination struc-
tures of the amyloid, with a peptide dimer as the asymmetric unit
(Fig. 4). For any two adjacent PIR p-strands j and j + 1, feature ii
dictates that His2 of strand j be singly coordinated if His2 of strand
j + 1 is doubly coordinated. Likewise, His4 of strand j must be
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singly coordinated if His4 of strand j + 1 is doubly coordinated.
Two possible Zn coordination configurations can arise from the
combinatorics: S for His2 and S for His4 in strand j would lead to
an SS/DD (j/j + 1) configuration, whereas S for His2 and D for
His4 in strand j would lead to an SD/DS (j/j + 1) configuration.
We devised a structural bioinformatics approach to eliminate the
possibility of one of these two models (SS/DD), as well as to de-
termine the plausibility of the remaining model (SD/DS). Al-
though structural bioinformatics is widely used in protein structure
determination and verification (38, 39), it has been much less used
for determining metal-protein coordination structure.

Our approach begins with identifying structural elements in the
Protein Data Bank (PDB) that simultaneously satisfied features
i—iv of the HHQ fibril above. Within a nonredundant database of
the PDB, we searched for His residues with N81 or N&2 atoms
within 2.5 A of Zn. To satisfy feature i, we restricted these hits to
His residues with p-sheet (¢, y) angles. To satisfy feature ii, we
only considered His—Zn fragments with N&1 coordination because
all His residues in HHQ coordinate Zn with their N&1 nitrogen.
From this set of fragments, we only considered His—Zn fragments
that satisfy the NMR-derived His rotamer constraints, thus satis-
fying feature iii. This search process resulted in distinct sets of
His—Zn geometries from natural proteins that agree with all NMR
constraints for His2%, His2P, His4®, and His4® (four sets total).
These His-Zn fragments were superimposed via backbone atoms
onto a PIR p-strand amyloid structure from the PDB at positions i
and i + 2. This backbone superposition places the accompanying
Zn atoms of the His—Zn fragments in space relative to the four His
side chains of the dimer asymmetric unit. From this distribution, we
sought a Zn coordination structure that is consistent not only with
the experimental SSNMR data but also with the observed His—Zn
coordination geometries from the PDB (S Appendix, Figs. S5 and
S6). We found that the SD/DS solution yielded excellent overlap
between Zn distributions of N81-coordinated His residues that were
cross-strand (strands j, j + 1 as well as j, j — 1) and at the same
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Fig. 3. The 1D '3C and "N spectra of the HHQ fibrils. (A) The 1D '3C spectra
of His2-labeled fibrils without and with zinc. ssb denotes spinning sidebands.
Apo, singly coordinated, and doubly coordinated histidine signals are
assigned in black, blue, and red, respectively. (B) The 1D >N spectra of His2-
labeled fibrils without and with zinc. (C) The 1D 'C spectra of VHL-VL mixed
labeled sample without and with zinc. An ">N-"3C dipolar filter was used to
select the His4 signals. (D) The 1D BN spectra of VHL-VL mixed labeled fibrils
without and with zinc. Peak assignments are obtained from 2D correlation
spectra. Zn®* binding caused two sets of chemical shifts for His2 and His4.
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residue position. Furthermore, although Ne2 ligation was not in-
cluded as an explicit restraint, a single set of rotamers positioned the
Ne2 of the third His in an optimal geometry for double co-
ordination. The alternative configuration of SS/DD was eliminated
as a possibility because it resulted in a Zn-binding geometry of
doubly coordinated His residues that is far from those observed in a
large set of nonredundant X-ray crystal structures and that is in-
consistent with chemical principles known to determine Zn co-
ordination geometries (40, 41).

The resulting structure (Fig. 54 and SI Appendix, Fig. S7)
shows a singly and doubly coordinated histidine in each strand,
with the side chains alternately pointing to the N terminus in the
SD strand (mf rotamers) and the C terminus (¢ rotamers) in the
adjacent DS strand. Two p-strands constitute the basic repeat
unit, and two different triple-His coordination spheres exist.
Zn**-A is bound to His,® and His,” from one strand and His,"
from the neighboring strand, whereas Zn>*—B is chelated by
His,” and His,® from one strand and His," from the adjacent
strand. The doubly coordinated histidines bridge the Zn** ions in
an infinite zigzag along the fibril axis. Although we do not di-
rectly measure Zn-N contacts, the computed structure shows
N-Zn-N angles near that of a tetrahedron, leaving one free co-
ordination site at each Zn>" to interact with water or substrates.

Hydration of the Zn?*-Binding Site of HHQ. Direct evidence that
water hydrates the His side chains and thus lies in the vicinity of
Zn>* is obtained from 2D 'H-""N correlation spectra of the
hydrated fibrils (Fig. 64) (42). The spectra show clear water
cross peaks to the 174-ppm Ne2 of His,® and His,, and the
water line widths are narrower than the aromatic 'H line widths
(SI Appendix, Fig. S8), indicating that the histidine-associated
water exchanges rapidly with bulk water. Under frozen condi-
tions, "Ne2—'H dipolar couplings are 8.4 kHz for His,® and 7.9 kHz
for His,® (Fig. 6B) (43), indicating that the nearest water proton
is 1.13 and 1.15 A away, respectively. In comparison, the 211-ppm
nitrogens show much weaker couplings of 2.1 and 2.6 kHz, consistent
with the absence of nearby protons for these Zn**-coordinating
nitrogens.

The Zn**-coordinated and hydrated histidine structures, to-
gether with the intermolecular Ile, Val, and Leu side chain
contacts, indicate that the PIR p-strands assemble into bilayers
whose interior consists of the hydrophobic Ile, Val, and Leu side
chains from two apposing sheets, whereas the exterior is deco-
rated by the polar His2, His4, and water, coordinating Zn** (Fig.
5B). Atomic force microscopy data (not shown) indicate that
multiple bilayers can stack, stabilized by the hydrated polar in-
terfaces (Fig. 5C). The relative orientation of the strands
bracketing the polar interface is not known and may be either
parallel or antiparallel. In either case, the hydrated Zn** ligand
would appear well oriented to interact with substrates diffusing
to sites on the surface of the fibril or hydrated sheets within
the fibril.

The alternating dry and wet sheet-sheet interfaces resemble the
steric zipper structures of crystalline peptide fibrils (44), but the

Fig. 5. Coordination structure of Zn®*-bound HHQ fibrils. (A) Energy-minimized structure of one p-sheet. Each Zn®>* (orange) is coordinated by three His
nitrogens from two neighboring strands. Half of the histidines bridge two Zn?* ions. Water molecules are present in the coordination sphere, but their exact
positions relative to Zn* are unknown. (B) Two f-sheets stack with the hydrophobic residues facing each other and with the strands in the two sheets having
antiparallel orientations. (C) Schematic of the 3D assembly of the HHQ fibril. The parallel hydrogen-bonded p-sheets stack into bilayers with alternating
hydrophobic and polar interfaces that contain hydrated Zn?*-coordinating histidines.
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Fig. 6. Water-histidine interactions in HHQ fibrils. (4) The 2D 'H-'°N cor-
relation spectra of His2 and His4 in Zn®*-bound HHQ. Ne2 of singly co-
ordinated His exhibits a narrow water cross peak. (B) The ">N-"H dipolar
couplings of His2 and His4 at 243 K where peptide motion is frozen. The
couplings correspond to Ne2-H distances of 1.13 A and 1.15 A for singly
coordinated His2 and His4. The Zn?*-ligating nitrogens show much weaker
dipolar couplings, as expected.

inclusion of an infinite chain of metal-Higand complexes establishes a
different class of structures, which we name metal-peptide frame-
works by analogy to metal-organic frameworks. This 3D assembly is
held together by multiple interactions: hydrogen-bonding and metal—
ligand interactions between p-strands, the hydrophobic effect, and
polar water-mediated interactions. A similar topology of Cu®* bridging
His residues on adjacent parallel f-strands has been inferred
from scanning tunneling microscopy of a Cu®*-bound N-terminal
16-residue peptide of the Alzheimer’s f-amyloid peptide (45).

This bridging-histidine stabilized amyloid fibril structure, hereto-
fore unseen in naturally occurring proteins, may be important in
prebiotic molecules for templating enzymatic functions and may also
exist in neurodegenerative amyloids (46) to select for pathologically
significant 3D folds, conduct redox functions, and regulate metal
homeostasis. Determining the metal coordination structures should
thus be useful for designing artificial catalysts and materials and
might also have implications for the structural stabilities of neuro-
degenerative amyloids. Although metalloproteins harboring para-
magnetic ions such as Cu®* have been studied with NMR (17),
paramagnetic broadening makes the metal center difficult to detect.
Thus, diamagnetic Zn>*-containing proteins represent advantageous
alternative targets for structure determination of metalloamyloids
and metalloproteins. The SSNMR approach of measuring backbone
and side chain distances and chemical shifts that are indicative of
coordination structures is generally applicable and can be used, as
shown here, for the structure determination of other metal-
peptide frameworks.

Methods

Peptide Synthesis. Ac-IHVHLQI-CONH, was synthesized on a 0.1-mmol scale
using Fmoc solid-phase synthesis as described recently (47) and was purified
by reverse-phase HPLC to >98% purity. Peptide mass was verified by MALDI-
TOF mass spectrometry. A peptide stock solution in 10 mM HCl was prepared
for subsequent biochemical and SSNMR experiments.

Transmission Electron Microscopy. HHQ peptide (3 mg) was dissolved in 8 M urea
(450 pL) and incubated at room temperature for 15 min. Fibrilization was
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initiated by adding 4.43 mL Tris buffer (25 mM Tris, pH 8) containing 1 mM or
0.3 mM Zn?*. After 5 min of incubation, the sample (545 uM peptide) was
diluted to 25 uM using the same buffer without Zn. Sample aliquots were
adsorbed onto 200-mesh copper grids and then stained with uranyl acetate as
previously reported (28). An FEI Tecnai F20 electron microscope at an accel-
eration voltage of 80 kV was used to obtain the micrographs.

Fibril Preparation for Solid-State NMR. Ten '3C, ">N-labeled fibril samples with
Zn**:peptide ratios of 0-4:1 were prepared for SSNMR experiments (S/
Appendix, Table S1). Unless explicitly stated otherwise, most fibril samples
were prepared using excess of zinc (~1.5-fold) to ensure complete binding of
the metal ions to HHQ. From the pH 2 peptide stock, fibrilization was ini-
tiated by diluting the stock in pH 8 Tris buffer with or without ZnCl,. The
precipitates were collected by centrifugation. Additional fibrilization details
are given in S/ Appendix, Materials and Methods.

Solid-State NMR Experiments. The 2D PAR, CORD, and ">N-'H and '*C-'H
correlation experiments were measured on a Bruker 800-MHz (18.8-T)
spectrometer using a 3.2-mm HCN triple-resonance magic angle spinning
(MAS) probe. The '*C-">N REDOR and 2D '>N-'H dipolar-chemical shift
correlation (DIPSHIFT) experiments were measured on a 400-MHz (9.4-T)
spectrometer using a 4-mm MAS probe. The 2D ">N-"3C correlation and 2D
DARR experiments were measured on both 400- and 800-MHz spectrometers.
Most spectra were measured at 268-298 K, except for the '>N-"H DIPSHIFT
data, which were collected at 243 K. Further experimental details and '3C-"°N
REDOR fitting procedures are given in S/ Appendix, Materials and Methods.

Bioinformatics Search and Structural Modeling. We downloaded a represen-
tative single-chain PDB database from Dunbrack’s PISCES server (48),
updated on November 11, 2016: cullpdb_pc50 res2.5 R1.0_d161111_
chains21454. The database contains 21,454 single chains from proteins with
X-ray diffraction resolution of <2.5 A and sequence identity <50%. We
loaded this database into the Python-based bioinformatics program ProDy
(49). Within ProDy, we retrieved all histidines (along with i — 1 and i +
1 residues) that coordinate with Zn (His N81 or N&2 within 2.5 A of Zn) (Fig.
4). We filtered these by N&1-Zn coordination, motivated by the SSNMR
data that showed that all His residues within HHQ have their N&1 atoms
coordinated to Zn. We then filtered these three-residue + Zn fragments
by His (¢, y) angles to select those fragments in p-sheets, as defined
by —180° < ¢ < —45° and 45° < y < 225° (50). These fragments were further
filtered and binned by the NMR-derived distance constraints (S/ Appendix,
Fig. S4). The number of fragments found for the singly coordinated His
rotamer at position 2 was 35, and the number found for doubly co-
ordinated was 6; the number found for the singly coordinated His rotamer
at position 4 was 15, and the number found for doubly coordinated was 18.
The His residues along with the coordinating Zn from these fragments
were aligned by Ca, C, N, and O backbone atoms onto positions i and i +
2 of a p-sheet amyloid structure (PDB code: 1YJP) and analyzed for over-
lapping Zn distributions and simultaneous satisfaction of doubly co-
ordinated His (i.e., His N&2 is also positioned in a geometry that coordinates
Zn). The final model obeys all NMR constraints and yields a Zn:peptide ratio
of 1:1. The bioinformatics search results were used to confirm the SSNMR-
restrained structure, which was calculated in the CYANA software (51) and
refined in Xplor-NIH (52). Further details on the structural modeling are
given in SI Appendix, Materials and Methods.
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SI Materials and Methods

Thioflavin T assay. Fibril formation was verified by ThT fluorescence intensities (Fig. S1A),
which are absent in peptide-free solutions. Fibrils were prepared by mixing the pH 2 peptide
stock solution (200 pL of 1 mM peptide in 10 mM HCI) with 800 pL Tris buffer containing 1
mM ZnCl,, then adding ThT (8 pL, 3.13 mM). The final concentrations of the peptide and ThT
were 200 uM and 25 uM, respectively.

Catalytic activity assay. Catalytic activity was measured through p-nitrophenyl acetate (pNPA)
hydrolysis in the presence of 1 mM zinc. A pNPA (Acros Organics, 97%) stock (0.1 M) was
prepared in HPLC-grade acetonitrile. A 0.1 mM peptide solution at pH 8 was prepared
immediately before analysis by mixing a peptide stock (200 uL of 1 mM peptide), isopropanol
(20 uL) and buffer (1.8 mL, 25 mM Tris, 1 mM ZnCl,, pH 8). Solutions of variable pNPA
concentrations (0.26-1.00 mM) were prepared while keeping the total concentration of
acetonitrile the same (2%). The peptide (50 uL) was dispensed into a 96-well plate (CELLSTAR,
Greiner Bio-One) using a multichannel pipette, then freshly made substrate solutions (150 pL)
were added. The absorbance of the p-nitrophenol product at 405 nm was followed on a BioTek
Eon plate reader. Initial rates of product formation were obtained by dividing the slope of the
linear portion of the kinetic trace by the extinction coefficient of the product (16,600 M™ cm™)

(7). Fitting the data to the Michaelis-Menten equation v, =kcm[E0][S]0 / (K M+[S]O) with
[Eo]=125 uM yielded key and Ky,

Zinc binding stoichiometry assay. Zn>* binding stoichiometry was determined using inductively
coupled plasma optical emission spectrometry (ICP-OES) to measure zinc content and 'H
solution NMR to quantify the amount of peptide in the sample. 3.1 mg of peptide was dissolved
in 450 L of 8 M urea and the solution was incubated at room temperature for 15 min. Fibril
formation was initiated by adding this solution to 4578 uL of 25 mM Tris pH 8 containing 1 mM
ZnCl,. After incubation for 5 min at room temperature the sample was spun down in an
ultracentrifuge for 1 h at 100,000 g at 4 °C. The supernatant was decanted and the pellet was
resuspended in 4 mL of 25 mM Tris pH 8 containing 1 mM ZnCl,. The resuspended sample was
then spun down at 100,000 g for 1 h at 4 °C. The supernatant was carefully removed and the
pellet at the bottom of the tube was then dissolved in 1 mL of nitric acid and 200 uL of
deuterated dimethyl sulfoxide. 1D "H NMR spectrum was collected for this sample. Peptide
concentration was quantified by adding known amounts of DSS as an internal standard and
comparing the intensity of one its methylene groups (2H, 0.64 ppm) and the methyl groups of
peptides (24H, clustered between 0.8-1.05 ppm under these conditions). An aliquot of the sample
described above was taken for the ICP-OES (Perkin Elmer Optima 3300DV) experiments to
determine zinc concentration.

Fibril preparation for solid-state NMR. Ten “C, "N-labeled fibril samples with Zn*": peptide
ratios of 0 to 4 : 1 were prepared for SSNMR experiments (Table S1). Unless explicitly stated
otherwise, most fibril samples were prepared using an excess of zinc (~1.5-fold) to ensure
complete binding of the metal ions to HHQ. From the pH 2 peptide stock, fibrilization was
initiated by diluting the stock in pH 8 Tris buffer with or without ZnCl,. The precipitates were
collected by centrifugation. For example, IVL-labeled HHQ fibrils (sample 2) were prepared by
mixing 240 uL of stock solution containing 1.5 mg peptide with 3.68 mL of Tris buffer (25 mM

2



Tris, pH 8) containing 2 mM ZnCl, and 80 uL isopropanol. The mixture was incubated for 15
min before centrifugation at 30,000 rpm for 1 hr at 277 K to obtain the pellet. The corresponding
apo sample (sample 1) was prepared similarly but without ZnCl, in the buffer.

Mixed labeled fibrils (samples 3, 4, 9 and 10) for determining intermolecular packing
were prepared using a urea-based solubilization protocol to ensure complete mixing. The
lyophilized peptide powders were dissolved in 10 mM HCI containing 8 M urea, the solutions
were incubated for 15 min, then mixed and stabilized for 15 min. Fibril formation was initiated
by diluting the combined solution 10-fold into pH 8 Tris buffer with or without zinc. After 5 min,
the solution was centrifuged at 30,000 rpm for 30 min and then at 45,000 rpm for 1 hr. The pellet
was washed with 4 mL buffer to remove urea, then centrifuged again at 45,000 rpm for 1 hr to
obtain the fibrils. Samples 5, 6, and 8 were prepared similarly. Kinetic parameters of fibrils
prepared with urea solubilization are indistinguishable from those prepared without urea, and
EPR data (not shown) of Cu**-bound peptide also show no difference between fibrils prepared
without and with urea solubilization.

To prepare His2-labeled fibril with a 1 : 2 Zn** : peptide ratio (sample 7), 5 mg peptide in
765 uL. of 8 M urea was mixed with 7.5 mL Tris buffer with 0.3 mM ZnCl,. After centrifugation,
the collected fibrils were washed with 4 mL Tris buffer containing 5 uM ZnCl,.

Solid-state NMR experiments. SSNMR spectra were measured on Bruker 800 MHz (18.8 Tesla)
and 400 MHz (9.4 Tesla) spectrometers using 3.2 mm and 4 mm MAS probes. Typical
radiofrequency (rf) field strengths were 70-83 kHz for 'H decoupling, 50-62 kHz for "*C and 36-
39 kHz for N pulses. ”C chemical shifts are referenced to the methylene signal of adamantane
at 38.48 ppm on the TMS scale while "’N chemical shifts are referenced to the Met "N peak in
the tripeptide N-formyl-Met-Leu-Phe-OH at 127.88 ppm on the liquid ammonia scale.

1D "C and "N spectra were measured at ambient temperature under 7.25-7.50 kHz MAS.
2D "C-"C correlation spectra were measured under MAS frequencies of 7.25 to 14.5 kHz using
four polarization transfer methods: dipolar-assisted rotational resonance (DARR) with 50 ms
mixing (2), combined R2) -driven (CORD) spin diffusion with 300 ms mixing (3), and proton-
assisted recoupling (PAR) (4) with 5 ms and 15 ms mixing at 'H and "’C field strengths of 47
kHz and 50 kHz, respectively. For the CORD experiment on sample 4 to measure backbone
inter-strand contacts, an 8.8 ms spin echo was inserted before detection to suppress the
overlapping signals of uniformly "C, "N-labeled His4 so that cross peaks among V3 and L5
residues can be measured unambiguously. A CORD,, pulse sequence was used (3) and the
spinning speed was 14.5 kHz.

2D ""N-"C correlation spectra were measured using 0.50-0.55 ms REDOR for "C-"N
coherence transfer (5). 2D 'H-""C and "H-"N correlation spectra for studying histidine hydration
were measured at 273 K using Lee-Goldburg (LG) CP for polarization transfer and contact times
of 150 us for PC and 2.5 ms for "N (6). An FSLG sequence (7) with an 80 kHz transverse field
was used for 'H homonuclear decoupling during the evolution period. Histidine N-H distances
were measured using a dipolar-doubled 2D “"N-'H DIPSHIFT experiment (8) under 5 kHz MAS
at 243 K, with FSLG for '"H homonuclear decoupling. Time-domain data were fitted to obtain the



apparent couplings, which were divided by the FSLG scaling factor 0.577 and the doubling
factor to obtain the true couplings for calculating the N-H distances.

Histidine Co-NO&1 and No-Cd2 distances were measured using frequency-selective
REDOR (9) under 7.25-7.50 kHz MAS. The selective ’C 180° pulse suppresses *C-"°C scalar
couplings while the selective "N 180° pulse inverts the nitrogen spin of interest without
interference from directly bonded No: (to Cot) or Ne2 (to C82). The °C and "N Gaussian 180°
pulse lengths ranged from 552 to 828 s while the hard "N 180° pulse lengths were 13-14 us.
The REDOR experiments were conducted at 268 - 273 K where the imidazole rings are
immobilized, as verified by C82-Hd2 and Cel-Hel dipolar couplings.

BC.°N REDOR fitting. "°C spectra were measured with (S) and without (Sp) *N pulses to give
the dephased and control spectra, respectively. The intensity ratio, S/Sy, was fit using the
software SIMPSON (70) to obtain the *C-""N distances. The His4 Cal signals were deconvoluted
using the Dmfit program to remove resonance overlap with Leu5S Ca (/7). Intensity scaling
factors of 82% and 85% were applied to the simulated curves for His2 and His4, respectively, to
compensate for natural-abundance °C intensities and pulse imperfections. These scaling factors
were measured from the minimum S/S, value of Ca and C382 peaks when they are dephased by
their directly bonded No and Nel, respectively. To fit the Co-No1 dephasing of singly
coordinated His2, another scaling factor of 75% was applied to compensate for the 25%
contribution of apo His2 because the His2 Ca peak (53 ppm) is a superposition of 75% singly
coordinated and 25% apo residues. For the Ca-N61 REDOR data of doubly coordinated His2
and His4, the No1 and Ne2 peaks overlap at 211 ppm and simultaneously dephase Ca. Thus we
fit the Ca-No1 dephasing using a three-spin system in which the Ca-Ne2 distance was fixed to
4.4 A while the angle between the Ca-Ne2 and Ca-N3§1 vectors was fixed to 29°. The Ca-N31
distance was varied to obtain the best fit.

His-Zn distance and angle distributions for NMR structure refinement. We used our PDB
database to create updated distance and angle distributions of Zn-His pairs (Fig. S5) (/12). The
His N-Zn distance distributions were used as constraints in the NMR structure refinement, and
the angle distributions were used to confirm the final model. We created up-to-date %1-x2
distributions for all histidines coordinating with Zn in our database (1577 total histidines). We
analyzed y1-%2 by Zn-His N coordination dependence as well as by His backbone dependence
(Fig. S6).

Di-Zn** Imidazolate angles from bioinformatics search. 14 proteins in our PDB database were
found to contain a Zn-His-Zn imidazolate motif in a single chain. The Zn — His(Ring Centroid) —
Zn angles of these imidazolates ranges from 112°-144° (mean 133.3°, standard deviation, 9.5°)
which are listed as following: 143° (1BON, chain A), 137° (1CYS5, A), 120° (2BYO, A), 125°
(3B4N, A), 133° (3PHX, A), 140° (3U24, A), 144° (4C6F, A), 125° (4C98, A), 133° (4KIM, A),
112° (4PXY, A), 135° (4U06, A), 139° (5A7M, B), 139° (510G, B), 141° (7TMDH, A), (PDB
code, chain). The Zn — His(Ring Centroid) — Zn angles of the NMR structure of HHQ are within
the above range. As defined in Fig. S5 for monovalent His residues, the mean o angle, § angle,
and Zn-N distance of the divalent imidazolate residues in the PDB structures listed above are, for
NO&1-Zn, 183 +8°,4 +23°,2.1 +0.17 A, respectively, and, for Ne2-Zn, 188 + 13°,-7 £ 17°,2.1
+0.18 A, respectively. These values lay within the distributions of those shown for monovalent
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His residues in Fig. SS, supporting our use of monovalent His distributions to model divalent His
residues of HHQ.

Structure modeling and refinement. The final SSNMR-restrained structure was built in two
steps. The first step started with the backbone conformation of a previously described model,
which assumed one Zn®" for a pair of chains (/). Since the SSNMR and binding data indicate
that the major conformer has one Zn>" per chain, with equal populations of singly N&1-
coordinated and doubly N1, Ne2-coordinated histidines, we examined a number of ligand
combinations, but only one gave reasonable bond angles, distances and agreement with the
bioinformatics model (Fig. S7B). This structural model was calculated in the program CYANA
(13) using simulated annealing by molecular dynamics in torsion angle space. 100 structures
were calculated for a bilayer that contains six B-strands per sheet. The molecule in every other
strand is kept symmetric. For parallel packing of B-strands, inter-strand hydrogen bonds were set
between O/N of residue i in strand A and N/O of i+1/i-1 residue in the neighboring strand B. The
distance between neighboring Co. atoms from the same residue was kept as 4.87 A, which is the
characteristic inter-strand spacing in the cross-f motif. To maintain in-register alignment along
the fibril axis, the distance between Co atoms from the same residue in the first and the sixth
strands was kept as 24.35 A (= 4.87 x 5). The distance between the CP atoms of Ilel and Ile7 of
the opposite strand in the other sheet was set as 5.3-7.3 A, which keeps the spacing between
adjacent B-sheets at ~10 A. The Zn-N distance was set at 1.8-2.3 A. One water molecule per Zn
was added to maintain the tetrahedral coordination geometry by setting the Zn-O distance at 1.8—
2.3 A and the O-N distance at 3.5 A. The backbone ¢ and y angles of each residue were set to
the ranges of [-165°, -105°] and [105°, 165°], respectively. The result of this calculation with the
lowest target function is shown in Fig. S7B, which is confirmed by the bioinformatics search
(Fig. S7C). Two other zinc-binding locations with different combinations of His2 and His4
structures were also tested, but did not give as good agreement with NMR restraints or agree
with the bioinformatics search result and were therefore discarded.

In the second step, we refined the above structural model in Xplor-NIH (/4) using the
experimental solid-state NMR restraints, including backbone torsion angle of His2, Val3 and
His4 (Fig. S7A), intra-histidine distances (Fig. S4C), and intermolecular distance constraints
(Table S3). The measured (¢, ) angles have tight uncertainties of ~10° while the (¢, ) angles
of the other residues were taken as classic B-strand values with 30° uncertainties. Standard
potentials that define bond lengths, bond angles, and atomic radii, as well as torsion angle
database (torsionDB) and hydrogen bond (HBDB) potentials were used. To keep the -sheet flat,
two torsion angles consisting of four Cot atoms from the first and sixth strands of the same sheet
were set as 0°. These are His2; Co — His2¢ Cot — Gln6s Cax — Gln6; Cal, and His2¢ — Glnbs —
GIn6, — His2;, where the subscript indicates strand number. The relative positions of two [3-
sheets in a bilayer were constrained by intermolecular cross peaks measured in PAR spectra for
samples 9 and 10. In particular, 17 unambiguous inter-sheet experimental distance restraints,
between V3 and 17, and between I1 and L5 (Table S3), were used. We also applied the distance
restraints in the above CYANA calculation, except that the Zn-N distance was modified to be
2.0-2.2 A based on the statistics found in the bioinformatics search (Fig. S5). Two weak artificial
restraints were applied to the histidines: the Zn-Ne2/Nd1-Co2 angels were set as 125° with a
force constant of 40 kcal mol™ rad™.



Inputting all these restraints, we refined the structure by simulated annealing by slowly
cooling the structure obtained from the first step from 3000 K to 20 K. The final parameters in
the simulated annealing target function are: 30 kcal mol" A for artificial distance restraints and
hydrogen bond while 150 kcal mol™ A for experimental distances; 1000 kcal mol” A for bond
lengths; 500 kcal mol' rad™ for angles and improper dihedrals; 4 kcal mol' A™ for the quartic
van der Waals repulsion term; 200 kcal mol” rad™ for dihedral angle restraints. Each sheet has 6
strands and every other strand in the same sheet has nearly identical non-crystallographic
symmetry (NCS) restraints. NCS restraints also were applied to the strands that are directly
opposite each other in the two sheets. 20 lowest energy structures were selected and the lowest
energy structure was shown in Fig. 5. There were no violations in distance restraints larger than
0.5 A for hydrogen bonds and artificial distance restraints, and 0.15 A for experimental ones, and
no violations in torsion angles larger than 1.5° for residues 2-4 and 5° for other residues. In
addition, no angle violations are greater than 5° and no bond violations are greater than 0.05 A.
Structure calculation statistics are summarized in Table S4.



Table S1. Catalytic fibril samples for solid-state NMR experiments.

Zn** : peptide

Isotopic labeling Samples ratio Experiments
1 0 Chemical shift assignment
IVL: U-"C, “N-labeled I1, V3,
L5
2 4:1 Chemical shift perturbation by Zn**
3 0 Apo His4 chemical shifts
VHL + VL: "Ca-V3, U-"C, "N-
13 . s 130
543" 151\? ()IL;(L:'?-_’L?ETe_dI )Wlth S Intra-sheet -strand packing; His4
’ ’ ) 4 5:3 coordination structure; His4 Ca.-
NO1 and CO2-Na distances
5 0 Apo His2 chemical shift
Chemical shift perturbation by Zn**;
His2 coordination structure; His2
. 13 15 . )
H2: U-"C, "N-H2 6 5:3 Ca-Nd1 and CH2-Na distances;
His2 N-H dipolar coupling
His2 coordination structure at low
7 1:2 .
Zn?* concentration
LB 13~ 15N
X(}:IOLLJ_L sca V3, U-"C, "N-H4, 8 5:3 His4 N-H dipolar coupling
VI + L: U-"C, ®"N-V3, I7 mixed ) .
with U-"C, 5N-L5 (1 : 1) 9 5:3 Inter-sheet packing
LB N .
IL +v: U-"C, “N-I1, L5 mixed 10 5:3 Inter-sheet packing

with U-3C, "N-V3 (1 : 1)




Table S2. °C and "N chemicals shifts (ppm) of HHQ fibrils without and with Zn**. >C chemical
shifts are reported on the TMS scale while "N chemical shifts are referenced to liquid ammonia.

Residue N CO Ca Cﬁ Cy Cy2 Cod Cé2 Cel Nol Ne2
Apo 1235 1714 58.6 393 259 15.7 13.0 - - - -
Ilel 39 9
Zn>* 1250 1718 58.8 39' 3’ 25.0 15.7 12.9 - - - -
129.7, 314,
Apo 132.6 1724 53.0 33 4 135.9 - - 1156 1349 2496 1645
His2 Single 1282 1719 52.8 31.3 1355 - - 116.6 139.1 2100 1745
Double 1306 1715 513 31.8 135.0 - - 1219 1439 2100 208.0
Apo 129.3 171.2 58 4 3;;17’ 19.0 - - - - - -
Val3 :
Zn>* 128.3 170.5 58.5 314 18.6 - - - - - -
Apo 1299 1722 553117’ 31.7 136.1 - - 113.5 1343 2510 1674
His4 Single 1304 1719 52.8 31.6 135.2 - - 116.8 138.7 2110 1740
Double 129.3 171.9 50.5 31.5 135.7 - - 120.3 1445 2110 2070
1302, 172.7,
Apo 1262 1719 514 43.1 263 - 238 - - - -
Leus 172.8
Zn>* 123.9 ’ 512 43.5 25.6 24 .5 23.7 - - - -
171.6
369
Ile7 7Znz+ 174.5 57.6 376 253 16.1 11.7 - - - -




Table S3: Observed intermolecular cross peak intensities and distance constraints in HHQ
fibrils. Distance constraints were obtained from sample 9 (VI + L mixture) and sample 10 (IL +
V mixture). Normalized cross peak intensities (in %) are calculated as the ratio of the integrated
area of a cross peak with the total area of the corresponding ®; cross section. Distance upper
bounds (DUP) are estimated from analysis of the model tripeptide formyl-MLF, and d,, denotes
the average distance in the final structural ensemble. V3-L5 contacts are obtained from both
samples, whose sample number is indicated by a superscript.

5 ms PAR 15 ms PAR

Atom 1 (®;) Atom 2 (®,) intensity (%) intensity (%) DUP (A) day (A)
v3C 17g2 0.0 1.5
172 V3C 0.0 3.4 <10A  9.46+0.53
v3C 17d 0.0 3.8
17d V3! 1.4 3.7 <10A 8294058
V3b 17g2 0.0 5.9 <10A  7.11+0.64
V3b 17d 0.0 4.2
17d V3b 1.1 25 <10A  5.97+0.60
V3g 17C' 0.0 2.2

V3-I7 | Vig 0.0 34 <10A  8.23+0.11
V3g 17g2 0.0 4.9
172 V3g 0.0 8.6 <10A 5574060
V3g 17d 22 4.8
17d Vig 3.6 10.7 <8A 467057
I7b V3b 0.0 3.3 <10A 7.554+0.12
17b V3g 0.0 8.6 <6A 6.02+0.08
V3b 17gl/L5g 0.0 4.5 <10A  4.81+0.26
17gl/L5g V3g 0.0 3.8 <10A  3.92+0.24
17gl/L5g V3b 0.0 1.0 <10A  4.81+0.26

5 ms PAR 15 ms PAR
Atom 1 (®;) Atom 2 (®,) intensity (%) intensity (%) DUP (A) day (A)
’V3a L5d 0.0 1.5 <10A 5.10+£0.36
10
V3b L5a 0.0 1.8

107 55 V3b 0.0 14 <10A  6.44+0.14
Uv3b L5d 0.0 4.1 <10 A 3.98+0.42
v3g L5a 0.0 0.8

V3-L5 | '“Lsa V3g 0.0 4.4 <10A 5.42+0.17
’L3a V3g 0.0 2.2
v3g L5b 0.0 0.0
Lsb V3g 0.0 6.2 <10A  4.60+0.16
’L5b V3g 0.0 3.5
9

V3g L5d 0.0 1.3

10y3g L5d 0.0 23 <10A  326:0.22
’L5a V3a 0.0 0.7 <10 A 6.92+0.08
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107 54 V3C' 0.0 2.0 <10A 6.39+0.05
107 5p V3(! 0.0 1.9 <10 A 6.29+0.06
L5d V3g 0.0 0.0 <10A  3.26+0.22
5 ms PAR 15 ms PAR
Atom 1 (o)  Atom2(@,) | oo ty %) intensity (%) DUP (A) dav (A)
L5a 12 0.0 1.7 <10A  9.09+0.35
L5a Id 0.0 1.2 <10A 9.7240.53
L5b I1g2 0.0 2.2 <10A  8.41+0.44
L5b I1d 0.0 2.4
- 29+0.
I-LS |4 Lsd 0.0 6.4 <104 9.294061
L5d g2 0.0 0.0
+
Tg2 L5d 0.0 5.4 <104 699:101
I1b L5a 0.0 2.9 <10A  10.07+0.03
I1b L5b 0.0 4.2 <10A  9.37+0.12
I1b L5d 0.0 5.2 <10A  7.92+1.02
5 ms PAR 15 ms PAR
Atom 1 (@) Atom 2 (,) intensity (%)  intensity (%) DUP (A) da (A)
V3b I1b 0.0 1.0 <10A  7.09+0.17
V3b 12 0.0 2.0 <10A  6.26+0.51
V3b I1d 0.0 1.8 <10A  7.61+1.28
-3 <3, Tlg2 0.0 16 C10A S37s0as
g2 V3g 0.0 3.8 ' '
V3g I1d 0.0 1.2
+
11d V3g 0.0 43 <10A 645110
I1b V3g 0.0 6.0 <10A  6.11£0.22
5 ms PAR 15 ms PAR
Atom 1 (@) Atom 2 () intensity (%)  intensity (%) DUP (A) day (A)
L5a 17a 0.0 1.3 <10A 7.27+0.10
151 L5a 17g2 0.0 1.3 <10A  7.40£1.10
S-17 s, 17d 0.0 11 <10A  7.1420.56
L5b 17C' 0.0 1.9 <10A 8.28+0.15
L5b 17g2 0.0 1.7 <10A  7.02+1.23
L5b 17d 0.0 1.0 <10A 6.7340.62

10



Table S4. Solid-state NMR experimental restraints and structure calculation statistics.

Conformational restraints (per center monomer):

Intra-histidine distance restraints 4

Intermolecular distance restraints 40
Unambiguous inter-sheet distances: 17
Ambiguous inter-sheet and intra-sheet distances: 23

Dihedral angle restraints (¢p/1) 6

Violations per conformer

RMS distance restraint violation (A) 0.004 +0.014

Maximal distance restraint violation (A) 0.14

RMS dihedral angle restraint violation (°) 0.03+0.14

Maximal dihedral angle restraint violation (°) 1.20

Average RMSD to the mean coordinates (A)

All backbone heavy atoms 031+0.12

All heavy atoms 0.71 £0.08
Ramachandran plot summary (%)

Most favored regions 99.8

Additionally allowed regions 0.2

Generously allowed regions 0.0

Disallowed regions 0.0
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Fig. S1. Fibril formation, catalytic activity and binding assays. (A) ThT fluorescence intensities,
showing fibril formation by the peptide Ac-IHVHLQI-CONH,. 200 uM peptide, 25 uM ThT,
0.8 mM Zn>" and 20 mM Tris pH 8 buffer were used for the experiments. (B) Esterase activity
by 25 uM peptide at pH 8 in the presence of 1 mM Zn”". Fitting to the Michaelis-Menten
equation yielded k., = 0.034 s and K,, = 509 uM.

cat
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Fig. S2. Effects of zinc binding on the HHQ chemical shifts and oligomeric structure. (A) 1D
>N and 2D ""N-"C correlation spectra of apo and zinc-bound IVL-labeled fibrils. Zn*" binding
narrowed the "N peaks, indicating structure ordering. (B) 2D "C-">C correlation spectra of
mixed V3, I7-labeled and L5-labeled fibrils at 5 ms and 15 ms PAR mixing. Short-range intra-
residue cross peaks are assigned in blue, inter-residue cross peaks indicative of antiparallel [3-
sheet packing are assigned in red, and inter-residue cross peaks that do not uniquely determine
the orientations of adjacent B-sheets are assigned in grey. Selected 1D cross sections from the 15
ms PAR spectrum are shown on the right. Shaded blue areas indicate the absence of L5-17
sidechain cross peaks, which rule out the parallel B-sheet alignment. (C) 2D "C-"C PAR
correlation spectra of mixed I1, L5-labeled and V3-labeled fibrils at 5 ms and 15 ms mixing.
Selected 1D cross sections of the 15 ms spectrum are shown on the right. The same color scheme
as in panel B is used for cross peak assignment. Multiple V3-17 and I1-L5 sidechain cross peaks
are observed, indicating that adjacent B-sheets orient in the antiparallel fashion. (D) 2D C-"C
and "N-"°C correlation spectra of His2-labeled fibrils with 1 : 2 Zn*" : peptide molar ratio.
Singly (blue) and doubly coordinated (red) imidazoles have similar intensities and each
represents ~1/3 of the total intensities, indicating that both coordination motifs are essential for
Zn”" binding.
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Fig. S3. 1D "°C and "N spectra for REDOR measurements. (A) His2-labeled HHQ. (B) VHL-
VL mixed labeled fibrils. The Zn*" : peptide molar ratio is 5 : 3. From top to bottom, 1D BN, B,
and representative Co-No1 and C82-Na. REDOR Sy and S spectra are shown. Arrows denote the
carrier frequencies of °C and "N in the frequency-selective REDOR experiments.
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Fig. S4. Summary of °C and "N chemical shifts and rotameric structures of (A) His2 and (B)

His4. (C) Measured backbone-sidechain distances in each type of histidine.
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Fig. SS. Distribution of angles and distances for histidine N-Zn pairs in the protein databank. o-
angle distribution of His NO — Zn and Ne — Zn pairs. The definition of histidine Zn-N angles is
shown in the top. Positive 3 angle is taken to be in the direction of the cross product (HisNo —
HisCentroid) ® (HisNe — HisCentroid). The histidine ring centroid position is shown as an open
circle. P-angle distributions of His NO — Zn and Ne — Zn are shown in A and D. Distance
distributions of histidine NO — Zn and Ne — Zn are shown in E and F, with each fit to a weighted

Distance (Angstroms)

sum of two Gaussian functions.
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Fig. S6. %, -x2 distributions of histidines. (A) Histidines satisfying No-Zn distance < 2.5 A. (B)
His residues satisfying His Ne-Zn distance < 2.5 A. (C) [-sheet His residues satisfying No-Zn
distance < 2.5 A. (D) B-sheet His residues satisfying Ne-Zn distance < 2.5 A. (E) a-helical His
residues satisfying NO-Zn distance < 2.5 A. (F) a-helical His residues satisfying Ne-Zn distance
<2.5 A. B-sheet ¢, y values were defined as —180° < ¢ < —45° and 45° < 4 < 225°. a-helical
were defined as —180° < ¢ < 0° and —100° <1 < 45°.
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A TALOS-N predicted (o, ) torsion angles of HHQ fibrils based on 3C and *N chemical shifts

Apo Single His2-Double His4 Double His2-Single His4
Residue ] \J ] | (] \J
His2 9911 128+6 10910 129+6 12+9  129+6
Val3 “12+£10  130+6 A11+9  128+5 13+7  125+6
His4 M4+8 13127 415+8 132+ 11 “114+10 13310
B  Model from the first step C Model from bioinformatics D His2 His4

tt it

NLZRUAAA Ao

B !giszse @ His4D 5 mt,znb\mt Zn-A
©" Hisss v’ 708
A His2® A%
\.~
° mt/ Zn \mt Zn-A
B W Br=SY VD >

Fig. S7. Modeling of the final fibril structure. (A) TALOS-N predicted (¢, ) torsion angles of
the Ac-IHVHLQI-CONH, peptide fibril based on °C and "N chemical shifts. (B) Model with
the lowest target function after optimization using CYANA. One Zn** is associated with each
strand and two different zinc coordination spheres are shaded. (C) Model optimized using the
bioinformatics approach. (D) Schematic of the fibril structure showing two inequivalent
coordination environments around the Zn>" ions. Red bars denote the orientations of the histidine

rings.
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Fig. S8. Histidine aromatic 'H chemical shifts and additional N-H bond distances. (A) 2D 'H-"*C
correlation spectra measured at 273 K for apo His2-labeled fibrils, Zn*"-bound His2-labeled
fibrils, and His4-labeled fibrils. (B) '’N dimension of the 243 K 2D DIPSHIFT spectra of zinc-
bound fibrils and "°N-"H dipolar curves of His2 (open circles) and His4 (filled circles) in apo
fibrils. The dipolar couplings are values after taking into account the FSLG scaling factor of
0.577 and the doubling factor. The best-fit N-H distances are indicated.
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