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The cell walls of plants and microbes are a central source for bio-renewable energy and the major targets of
antibiotics and antifungal agents. It is highly challenging to determine the molecular structure of complex car-
bohydrates, protein and lignin, and their supramolecular assembly in intact cell walls. This article selectively
highlights the recent breakthroughs that employ *C/*°N solid-state NMR techniques to elucidate the architecture
of fungal cell walls in Aspergillus fumigatus and the primary and secondary cell walls in a large variety of plant
species such as Arabidopsis, Brachypodium, maize, and spruce. Built upon these pioneering studies, we further
summarize the underexplored aspects of fungal and plant cell walls. The new research opportunities introduced
by innovative methods, such as the detection of proton and quadrupolar nuclei on ultrahigh-field magnets and
under fast magic-angle spinning, paramagnetic probes, natural-abundance DNP, and software development, are

1. Cell walls: a medically important and energy-relevant
biomaterial

The cell wall is a carbohydrate-rich coating outside the plasma
membrane of plants and many microorganisms. The cell walls in
photosynthesis systems, such as plants, algae, and green bacteria, are
transformed from solar energies and carbon dioxide, with enormous
value as a primary source of building materials, textiles, biofuel, nano-
composites, and high-value reagents [1]. Polysaccharides in the cell walls
of fungal pathogens and invading bacteria are absent in human cells;
these components trigger immune recognition and serve as the major
target of antifungal drugs and antibiotics [2,3]. Polysaccharides and
other biomolecules (such as protein and lignin) are held together by
covalent linkages and physical packing interactions to form a mechani-
cally strong composite, which allows the cell to retain integrity and
morphology under external stress. Nevertheless, the numerous in-
teractions between biopolymers also pose a challenge for post-harvest
processing and utilization of biomass and make it technically difficult
to characterize these biomaterials with high resolution.

Recently, magic-angle-spinning (MAS) solid-state NMR spectroscopy
has been extensively employed to investigate intact cell walls. Uniformly
isotope-labeled samples are produced by feeding the organism of interest
with 13CO, or solid/liquid media containing '3C-glucose and '°N-salts
[4]. Multidimensional *c-'3C/"®N correlation spectra collected on
whole cells or isolated cell walls provide the atomic resolution needed for

* Corresponding author.
E-mail address: tuowang@lsu.edu (T. Wang).

https://doi.org/10.1016/j.ssnmr.2020.101660
Received 15 February 2020; Accepted 17 March 2020
Available online 26 March 2020

0926-2040/© 2020 Elsevier Inc. All rights reserved.

determining the polymorphic structure, intermolecular interaction,
water contact, and molecular motions of biomolecules in their cellular
environment (Fig. 1). Within the last decade, a large variety of bio-
systems have been studied: the primary and secondary cell walls of seven
plant species, including Arabidopsis thaliana, Brachypodium distachyon
and Zea mays (maize), rice, switchgrass, poplar and spruce [5-14]; the
biofilm or cell walls of bacterial and fungal pathogens such as Aspergillus
fumigatus, Cryptococcus neoformans, and Bacillus subtilis [15-21]; as well
as the carbohydrate components in microalgae Chlamydomonas rein-
hardtii [22]. Here we will review the major findings related to plant and
fungal cell walls, emphasize the key questions awaiting investigation,
and discuss the future directions enabled by the improved instrumenta-
tion and methodology, in the attempt to inspire innovative research in
carbohydrate and cell wall NMR.

2. Recent advances in cell wall research by solid-state NMR
2.1. Molecular insight of plant primary cell walls

Since 2010, Hong and colleagues have been pioneering the in-
vestigations of primary plant cell walls, a component synthesized in the
growing plants (Fig. 2a—c) [23,24]. The composition is well known from
numerous biochemical studies, and three major types of polysaccharides
are present [25,26]. Cellulose microfibrils are formed by 18 or more
glucan chains (3-4 nm across) and they are highly rigid and partially
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Fig. 2. Cell walls and biomolecules studied by solid-state NMR. a, NMR-derived conceptual models of primary cell walls of Arabidopsis (dicot), including the intact
and wild-type cell walls at different pH values, as well as multiple mutants that attenuate the structure and content of matrix polysaccharides (pectin or XyG),
sequentially digested cell walls that are chemically depectinated followed by enzymatical removal of XyG. The sample numbers are labeled to facilitate discussion. b,
Chemical structures of the biomolecular components in primary plant cell walls. ¢, Structural scheme of primary grass cell walls based on data collected using
Brachypodium and maize. d, Plant secondary (2nd) cell wall architecture of Arabidopsis, maize, and the softwood spruce. e, Representative structure of polymers that
are unique to secondary plant cell walls. f, the structure and polymers of fungal cell walls in A. fumigatus. Adapted from reference [5,8,13,15,29,30,32,33,35] with

copyright permission.

crystalline. The backbones of pectin, such as rhamnogalacturonan-I
(RG-]) and homogalacturonan (HG), are often acidic and responsible
for regulating cell wall hydration. Hemicellulose interacts with cellulose
and pectin, with a plant-dependent composition: the major hemicellulose
in primary cell walls is xyloglucan (XyG) in dicots, such as Arabidopsis,

but changes to glucuronoarabinoxylan (GAX) and mixed-linkage glucans
(MLG) in commelinid monocots (grasses) such as Brachypodium and
maize. Using '3C-labeled and isolated cell walls, three ground-breaking
discoveries were reported, which have revised and substantiated our
limited understanding of primary cell wall architecture.



W. Zhao et al.

First, cellulose, hemicellulose, and pectin are found to associate
noncovalently on the sub-nanometer scale to form an integrated network.
In wild-type Arabidopsis (Fig. 2a, Sample 1), a large number of cross peaks
have been identified between pectin and cellulose, which were previ-
ously considered to be phase-separated [5]. The equilibrium intensity of
13¢_13¢ spin diffusion suggests that 25-50% of cellulose are in close
proximity to pectin [6,27]. This polymer interaction is independent of
the sample’s hydration history [28] and can be fully preserved after
partial depectination by CDTA and sodium carbonate (Fig. 2a, Sample 2),
which disrupts the calcium crosslinking of HG and consequently
removing the interfibrillar HG molecules (40% of all HG) that are not
binding cellulose [28-30]. Due to the loss of immobilized water in the
depectinated sample, the rate of 'H-'H polarization transfer from water
to polymers have been globally slowed down for all polysaccharides,
which can be partially restored by the subsequent digestions of XyG using
xyloglucanase and Cell2A enzymes due to the enhanced surface areas of
the residual macromolecules (Fig. 2a, Sample 3) [29]. In addition, the
removal of XyG using an xxtIxxt2xxt5 triple knockout line (Fig. 2a,
Sample 4) markedly enhances the dynamics of the remaining poly-
saccharides [5], which echoes with the global alternation of B spin
diffusion observed in the sequentially digested samples, revealing a
single network of all polysaccharides.

It is noteworthy that a weaker pectin-cellulose interaction is often
accompanied by the chemical modification of pectin structure, for
example, a higher degree of methyl esterification, an increased occur-
rence of sidechain branching by arabinan or galactan, a reduced extent of
calcium-crosslinking, and promoted HG aggregation. These molecular
changes macroscopically correlate with faster growth, for example, in the
inflorescence stem of Arabidopsis with a segmentally increasing rate of
elongation from the base to the apical region (the tip) [31], in the PGX1AT
mutant that produces smaller pectin but larger plants (Fig. 2a, Sample 5)
[32], and in a low-pH sample that mimics the acid growth condition
(Fig. 2a, Sample 6) [33].

Second, with the assistance from Dynamic Nuclear Polarization
(DNP) and paramagnetic methods, two methods have been developed to
reveal how a class of proteins (expansin) unfasten the polysaccharide
joints to mediate cell expansion [34,35]. Expansins lack the lytic activity
expected for wall-loosening enzyme and have been assumed to disrupt
the non-covalent contacts between polysaccharides [36]. Solid-state
NMR studies have shown that expansins perturb the
cellulose-xyloglucan nexus in Arabidopsis but disrupt the junctions be-
tween the highly and lowly substituted GAX in maize (Fig. 2c); therefore,
expansins bind different polysaccharides in the cell walls with distinct
composition.

Third, with the sharp '3C linewidths on high magnetic fields (0.7-1.0
ppm for cellulose on an 800 MHz NMR) and the chemical shift calcula-
tions using Density Functional Theory (DFT), we have resolved seven
types of glucose units in the cellulose of Arabidopsis and grass primary cell
walls, determined their hydroxymethyl conformations via 'H-'H dis-
tance measurement, and localized these conformers in the microfibrils
[37-39]. These forms deviate noticeably from the crystallographic
structures of I and Ip allomorphs obtained using the highly crystalline
cellulose from bacteria and tunicates (a marine animal). In addition,
these seven types of glucose residues have been consistently observed in
the secondary cell walls of Arabidopsis, maize, switchgrass, and rice [8],
as well as multiple woody plants such as Eucalyptus, poplar, and spruce
(unpublished results). Therefore, the Ia and If model allomorphs are
generally absent in most natural resources. So far, the NMR signals of Iu
and Ip structures have only been observed in cotton, thus a large crys-
tallite is a prerequisite for accommodating the model structures [40].

2.2. Lignin-carbohydrate packing in plant secondary cell walls
The secondary cell wall is formed once the cell ceases expansion and

it comprises the majority of lignocellulosic biomass. In secondary cell
walls, cellulose microfibrils aggregate into larger bundles (10-20 nm
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across), which are further embedded in a matrix containing the aromatic
polymer lignin and hemicellulose such as xylan and glucomannan [41].
Lignin-carbohydrate interactions confer the biomass with recalcitrance
to chemical and enzymatical treatments; therefore, it is of broad interest
to understand the chemical principles underlying these polymer in-
teractions. Paul Dupree, Ray Dupree, and colleagues have conducted
several studies to recognize the functional relevance of xylan poly-
morphism in Arabidopsis secondary cell walls. It is found that only the
xylan with a 2-fold helical screw symmetry and a regular pattern of ac-
etate or glucuronate substitutions can bind cellulose microfibrils
[10-12].

Stimulated by these discoveries, we have investigated the mature
stems of maize, rice, switchgrass, and Arabidopsis, using a series of
2D'3C-13C correlation methods specially designed for enhancing the
aromatic signals of lignin and detecting the lignin-carbohydrate interface
(Fig. 3a) [8]. Hundreds (234) of intermolecular cross-peaks have been
identified, which pinpoint six categories of packing interactions between
the different functional groups in lignin and carbohydrates as illustrated
in Fig. 3b-g. Strikingly, lignin mainly interacts with xylan rather than
cellulose. In addition, the number and intensities of these cross peaks
statistically correlate with the number of methyl ether substitutions in
lignin residues (Fig. 3b), which signposts a prevalent role of electrostatic
contacts in stabilizing polymer interface. Integrating the information on
polymer packing, dynamics, and hydration has resulted in a molecular
view of lignocellulosic materials: lignin self-aggregates to form dynami-
cally unique and hydrophobic nanodomains, with surface contact to the
non-flat xylan (3-fold) through abundant electrostatic interactions [8].
This xylan-lignin interface links to the flat-ribbon domain of xylan that is
coating the surface of cellulose microfibrils (Fig. 2d, left).

In the softwood spruce, xylan also binds cellulose through its 2-fold
conformer while galactoglucomannan (GGM), a unique hemicellulose
in softwoods, binds the surface of cellulose microfibrils in a semi-
crystalline manner [13]. Since both GGM and xylan have shown two
domains, one coating cellulose and the other filling interfibrillar space, it
is proposed that some GGM and xylan bind to the same microfibril and
further associate with lignin (Fig. 2d, right).

2.3. Insights into the fungal cell wall architecture

Recently, we have also initiated a project elucidating the cell wall
structure of an airborne fungal pathogen A. fumigatus. The samples are
measured alive at room-temperature on an 800 MHz NMR; the 3C
linewidths are as narrow as 0.4-0.6 ppm for the rigid polysaccharides
and 0.3-0.5 ppm for the relatively mobile carbohydrates and proteins.
With the remarkable resolution, the 3C and !N signals of 7 types of
polysaccharides, including «-1,3-glucan, chitin (a nitrogenated poly-
saccharide), mannan, and three types of p-glucans, together with their 23
conformers, have been identified (Fig. 2f) [15]. Long-range correlation
methods, such as 13¢_13¢ and '>N-'5N Proton-Assisted Recoupling (PAR)
[42] as well as NCACX measured with a variable 13¢_13¢ mixing time,
have been employed to identify in total 65 intermolecular interactions.
Most of these physical interactions occur between chitin and a-1,3-glu-
cans (Fig. 4a), which also show high hydrophobicity (Fig. 4b and c) and
rigidity. These two molecules are complexed to form a mechanical
scaffold that is surrounded by a soft matrix of diversely linked p-glucans
and capped by an external shell rich in glycoproteins (Fig. 2f). This study
has established a preliminary structural frame, which requires systematic
validation and encourages structural investigations of individual cell wall
molecules and their biomedical relevance.

3. Biochemical perspectives: the unresolved questions

In an earlier Trends article published in 2016, several underexplored
areas in plant NMR have been summarized, which mainly include the
coalescence of multiple cellulose microfibrils, the functional structure of
lignin, and the putative interactions between polysaccharides and
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structural proteins [24]. So far, we have already obtained an in-depth
understanding of lignin-carbohydrate interactions in secondary cell
walls but also discovered more aspects that remain ambiguous. For
instance, the sophisticated patterns of covalent linkages between lignin
residues and their impact on lignin’s capability of interacting with
polysaccharides have not been discussed. Cellulose-lignin interaction is
scarce in maize and Arabidopsis, but this concept may not hold for the
woody plants with a distinct composition of biomolecules and a more
compact packing. The conformational relevance of glucomannan in
spruce and other softwood species is not yet understood. We also need to
understand the structural origin of the abundant electrostatic in-
teractions between carbohydrates and aromatics and how these physical
contacts contribute to the mechanical properties and digestibility of

lignocellulosic materials. Inevitably, we also need to figure out a way to
integrate solid-state NMR results with the numerous studies using
solution-NMR, which are focused on the covalent linkages in extracted
residuals.

An unexpected finding in the A. fumigatus fungus is the multifaced
role of a-1,3-glucans. These molecules are simultaneously in association
with chitin for stiffness and existing in the mobile phase [15]. This
observation has countered the biochemical results in which a-1,3-glucans
are extractable by strong alkali and thus constantly excluded from the
structural core of any prevailing models [43]. Also, the amount of this
polysaccharide is much lower in many other pathogens such as most
yeasts (for example, Candida albicans); therefore, it is of great interest to
understand the structural and dynamical heterogeneity of
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polysaccharides across fungal species. Another major polysaccharide,
mannan, is found to coexist with proteins in the mobile domain of
A. fumigatus cell walls, likely constituting the mannoproteins in the
outermost layer as depicted in biochemical studies. Further evidence
assessing the structural role of mannan and their covalent linkages with
structural proteins are crucial to the understanding of this structurally
dynamic shell that regulates cellular recognition and fungal pathogenesis
[44]. It is also important to understand how the microbe re-structures its
cell wall in response to antifungal agents, which will explain the origin of
drug resistance from a structural perspective.

4. Technical outlook: opportunities beyond conventional
methods

The past decade has seen the rapid development of solid-state NMR
techniques. Here, we have selectively summarized a few technical ad-
vances that could potentially revolutionize the field and establish new
research directions. These highlights have extended beyond the con-
ventional '3C/!°N-methods by involving other NMR-active nuclei or
electrons, with assistance from ultra-fast MAS, ultrahigh magnetic field,
DNP, as well as database and software coding.

4.1. 'H and °F under fast spinning: carbohydrate structure and
interactions

Direct detection of proton resonance provides high-sensitivity due to
the high isotope abundance (99.985%) and four-fold higher gyromag-
netic ratio over '3C. The strong homonuclear couplings enable distance
measurement beyond 1 nm and facilitate structural determination.
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Although proton detection has already been widely employed to study
perdeuterated or protonated proteins [45-48], it is rarely applied to the
carbohydrates that are rich in protons with complex chemical environ-
ments. Recently, Hong and Phyo have conducted a set of
proton-detection experiments, such as the 2D CH INEPT, 3D CHH
INEPT-TOCSY, and 2D hChH RFDR techniques [49-51], to assign the Bii
resonances of polysaccharides and to determine their intermolecular
packing, for example, through cross peaks between cellulose carbons and
matrix polysaccharide protons, in '3C-labeled Arabidopsis primary cell
walls [52]. The protonated material has been back exchanged in D,0,
which suppresses the water intensities and reduces the contribution of
hydroxyl protons. A moderately fast MAS frequency (30-50 kHz) is
chosen to simultaneously enable proton-detection of the mobile matrix
and filter out the signals of rigid microfibrils [52]. The narrow H line-
width (0.06 ppm on an 800 MHz spectrometer, Fig. 5a) and the excellent
agreement between solid-state 'H chemical shifts and solution-NMR
observables consistently confirmed that the observed matrix poly-
saccharides are intrinsically mobile in cell walls. In addition, Simorre,
Schanda, and coworkers have assigned the resonances of peptidoglycan
in intact Bacillus subtilis under 100 kHz MAS, with representative 'H
linewidths of 50-120 Hz (0.05-0.13 ppm) on a 950 MHz spectrometer
[53,54]. Using the 'y-'H RFDR scheme, the authors have identified
multiple inter-residue cross peaks, including unambiguous cross peaks
between the GlcNAc sugar and the 1-alanine residue on the peptide stem,
crossing a long distance of at least 5 A [53]. These studies have presented
a novel strategy for investigating complex biosystems and landed the
stage for pursuing 'H investigations without labeling.

Similarly, '°F has a high gyromagnetic ratio and 100% natural
abundance. Adding to these merits is a large range of chemical shifts
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for resolving various chemical motifs. As demonstrated on pharma-
ceutical compounds, GB1 protein, and HIV-1 capsid protein,
19¢_19¢ /1 distances can be measured on the nanometer scale (1-2
nm) [55-57], which is a major extension from the reach of 13¢ and 15N
methods. Typically, site-specific fluorination causes minimal pertur-
bation to the structures of many proteins and materials [56,58], but
may substantially disrupt the hydrogen bonds in carbohydrate poly-
mers. An appropriate labeling scheme is needed to sparsely fluorinate
carbohydrates without eliminating their functional structures and as-
sembly [59].

4.2. V0 at ultrahigh-field: a new biochemical probe

Oxygen is another core element that determines the hydrogen
bonding and chemical properties of biomolecules. Carbohydrates are
particularly rich in oxygen atoms, with at least one oxygen covalently
linked to each single carbon site. Recently, the materialization of a world-
record 1.5 GHz (35 T) series-connected hybrid (SCH) NMR magnet [60]
and the commercial ultrahigh field instruments have presented a unique
opportunity for high-resolution 70 studies. Griffin and colleagues have
revealed the markedly improved resolution of 70 spectra on ultrahigh
fields where the line-broadening by second-order quadrupole coupling is
attenuated [61]. They have also collected 2D13¢/15N/'H-170 correlation
spectra and determined internuclear distances through recoupling
methods such as ZF-TEDOR and REAPDOR [61,62]. Back in 2007,
Grandinetti and coworkers have already pioneered the measurement of
170 MAS patterns for monosaccharides and disaccharides that are
site-specifically labeled at either the hydroxyl or glycosidic oxygen sites
(Fig. 5b) [63]. The C-O-H angle and C-O distances, instead of the O-H
distances, are found to affect 170 quadrupolar couplings in carbohy-
drates. In addition, many other quadrupolar nuclei may benefit from the
availability of ultrahigh-field magnets. For example, >>S NMR could help
characterize many sulfurated carbohydrates (such as the ulvan, carra-
geenan, and rhamnan sulfate) in marine species [64]. Another popular
molecule is heparin, a sulfated glycosaminoglycan that prevents blood
clotting as an anticoagulant agent and induces filament assembly of tau
proteins [65]. Combining quadrupolar NMR with ultrahigh field magnets
provides a novel probe to the biochemically important sites in these
carbohydrates but improved methods are needed for resolving the many
oxygen sites in biological samples.

4.3. 2H: dynamics and water accessibility

In cell walls, carbohydrate dynamics were primarily evaluated by
measuring NMR relaxation and dipolar couplings [66], and
water-polymer contacts were mainly investigated using 1D/2D'3C-de-
tected, 'H spin diffusion methods and dipolar-filtered heteronuclear 2D
correlation techniques like MELODI-HETCOR [28,29,67] Recently, Hong
and coworkers have employed the Rotor Echo Short Pulse IRrAdiaTION
mediated cross-polarization (RESPIRATIONCP) technique [68,69] to ach-
ieve multi-bond, broadband 2H-'3C polarization using an affordable 2H
radiofrequency field of ~50 kHz and a short contact time below 1.7 ms
[70]. A rapid trans-gauche isomerization is identified in perdeuterated
bacterial cellulose. This hydroxymethyl motion around the C5-C6 bond
is absent in the interior glucan chains of cellulose but occurs to the sur-
face chains as revealed by their motionally averaged C6-2H quadrupolar
couplings. In H/D exchanged Arabidopsis cell walls, 2D'3C—?H correlation
spectra (Fig. 5¢) have shown a mixed quadrupolar pattern that can be
best deconvoluted into two components: the quadrupolar coupling con-
stant is 50 kHz for the mobile matrix polysaccharides and 187 kHz for the
rigid cellulose, which is a value approaching the hydrogen-bonded rigid
deuteroxyl quadrupolar coupling (Fig. 5d). This robust method can be
applied to evaluate the dynamics and water-accessible surface of carbo-
hydrates in various organisms.
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4.4. PRE: carbohydrate-ligand binding in cellular environment

In structural biology, carbohydrates are often treated as small li-
gands attached to large protein complexes, but this concept has been
inverted in cell wall studies. In plant cell walls, functional proteins are
usually present at low concentrations, but with the capabilities of per-
turbing polymer nexuses or chemically modifying/digesting certain
structural motifs. For the p-expansins that cannot be produced recom-
binantly, the extracted proteins from grass pollens are tagged with
paramagnetic Mn(II) labels via their solvent-accessible Cys residues
(Fig. 5e), and mixed with the 13C.labeled cell walls in maize [35]. Upon
binding to expansin, the hemicellulose glucuronoarabinoxylan (GAX)
has shown strong 'H and '3C Paramagnetic Relaxation Enhancement
(PRE) effects (Fig. 5f and g), and its stiff and mobile fractions have
become more rigid and dynamic, respectively. Therefore, p-expansins
have released the connections between the highly substituted GAX
(mobile) that forms the interfibrillar matrix and the rarely branched
GAX (rigid) that are packed with cellulose microfibrils. The optimized
protocols for incorporating paramagnetic sites and the PRE-enabled
distance determination [71-74] have made it feasible for revealing
the interactions between carbohydrates and many proteins or enzymes
that contain carbohydrate-binding modules [75].

4.5. Natural-abundance DNP and database: accommodate the growing
field

As an emerging technique, natural-abundance MAS-DNP has
enabled the measurement of 2D'3C-'3C/!>N/!H spectra on unlabeled
biomolecules (Fig. 6a). When applied to organic molecules and small
peptides, this technique could substantially facilitate NMR crystallog-
raphy by enabling the determination of '*N-!3C distance up to 7 A and
the measurement of '>N-!3C correlation at natural isotope abundance
[76-78]. Applications of this method to complicated biosystems allow
us to extract long-range distance constraints in polyglutamine (polyQ)
amyloid fibrils and nano-assemblies of cyclic peptides [77,79], vali-
date imino acid-aromatic interactions in native collagens [80], and
identify the compositional and conformational differences of cellulose,
hemicellulose, and lignin in various plant species (cotton, rice, and
poplar) [9,40,81]. These studies were conducted on medium magnetic
fields, the 400 MHz/263 GHz or 600 MHz/395 GHz DNP instruments;
due to the limited resolution, only highly ordered systems, such as
cellulose microfibrils and amyloid fibrils, or a selected component
within whole-cell sample could be studied. Because high-field DNP is
still inefficient at this stage but has become a necessity for providing
sufficient resolution for studying complex samples, the efforts trying to
improve the polarization mechanism and radicals at high fields could
substantially strengthen the capability of natural-abundance DNP
[82-84].

A rate-limiting process associated with natural-abundance DNP is to
interpret the large number of NMR-observables into structural informa-
tion. We have recently demonstrated that a heatmap comparing the
chemical shifts measured on the cotton cellulose and reported in litera-
ture allows us to quickly identify the relevant structures (Fig. 6b) [40].
This application benefits from the implementation of Complex Carbo-
hydrates Magnetic Resonance Database (CCMRD) that supports the
storage and sharing of information on chemical shifts, dynamics, and
structure. CCMRD is freely available to the public at www.ccmrd.org and
supports data deposition and data search by NMR chemical shifts, car-
bohydrate name, and compound class (Fig. 6¢ and d) [85]. By the time of
this article, 450 compounds from plants, fungi, bacteria, algae, and
engineered biomaterials are indexed by CCMRD, and this platform will
accommodate the rapid expansion of the dataset and facilitate the
development of statistics-based software [40]. My vision for carbohy-
drate ssNMR is to enable high-throughput and semi-automatic analysis of
spectra and structure, which requires dedicated efforts in method and
software development.
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Fig. 6. Natural-abundance DNP of unlabeled material assisted by database development. a, Natural abundance 2D'3C-'3C INADEQUATE spectrum of unlabeled
cotton. A and A’: glucose units in I« cellulose allomorph; B and B’: glucose units in Ip allomorph. b, 3C chemical shift RMSD map for comparisons between cotton and
other cellulose sources. The color scale of RMSD (ppm) is shown. ¢, Search interface of CCMRD database that supports data search by compound name, class, and
signal. d, Flowchart of data deposition and the 25 types of entries included for each compound. Adapted from reference [40,85] with copyright permission.

5. Concluding remarks

Solid-state NMR and DNP have demonstrated their unique capability
in understanding the nanoscale assembly of fungal and plant cell walls.
The rapid advances in NMR instrumentation and technology have made
it possible to address biochemical and structural questions that were
previously impossible to answer. The studies of plant and fungal cell
walls, combined with the many investigations of other complex bio-
systems, such as the bacterial cell walls and biofilm, algal poly-
saccharides, and mammalian carbohydrates, have formed an emerging
and unique research direction, which is of high significance to the
development of biorenewable energy, biomedical therapies, and high-
value products based on carbohydrate polymers.
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