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SUMMARY

Structural analysis of macromolecular complexes within their natural cellular environment presents a signif-
icant challenge. Recent applications of solid-state NMR (ssNMR) techniques on living fungal cells and intact
plant tissues have greatly enhanced our understanding of the structure of extracellular matrices. Here, we
selectively highlight the most recent progress in this field. Specifically, we discuss how ssNMR can provide
detailed insights into the chemical composition and conformational structure of pectin, and the consequen-
tial impact on polysaccharide interactions and cell wall organization. We elaborate on the use of ssNMR data
to uncover the arrangement of the lignin-polysaccharide interface and the macrofibrillar structure in native
plant stems or during degradation processes. We also comprehend the dynamic structure of fungal cell walls
under variousmorphotypes and stress conditions. Finally, we assess how the combination of NMRwith other
techniques can enhance our capacity to address unresolved structural questions concerning these complex
macromolecular assemblies.
INTRODUCTION

The cell walls of plants and fungi play vital roles in cell shape, me-

chanics, integrity, adhesion, and extensibility.1–4 These macro-

molecular assemblies are also crucial for energy and carbon

storage, as well as antimicrobial resistance, and serve as poten-

tial targets for novel antifungal agents.5,6 From a structural

perspective, cell walls represent highly sophisticated biomate-

rials created by nature, inspiring extensive efforts to develop arti-

ficial materials that mimic the chemical and physical principles

governing macromolecular assembly.7,8 However, the charac-

terization of such nanocomposites in their native state presents

significant challenges.

Recent advancements in solid-state NMR (ssNMR) tech-

niques have enabled high-resolution investigation of cell

wall materials by leveraging methods initially developed for

NMR structural biology of proteins, nucleic acids, and poly-

mers.9–12 This approach has been adopted due to the suffi-

cient spectroscopic resolution available, which allows for the

acquisition of numerous structural constraints to visualize

the complex composition of biomolecules within cell walls.

Additionally, it addresses the limitations posed by the inherent

heterogeneity and complexity of the cell wall by utilizing

simplified representations.13 Extensive studies have been con-

ducted on numerous plant and fungal species, leading to sig-

nificant revisions in our understanding of cell wall structure.14

In this review, we aim to provide a concise overview of the key

principles in ssNMR methodology and the most recent struc-

tural findings, with a focus on those published within the

past three years.
METHODOLOGY ADVANCES ENABLING ssNMR OF
CELLULAR SAMPLES

One of the major merits of ssNMR lies in its ability to directly

characterize living cells or intact tissues.15,16 Since solubilization

or extraction is not necessary, the samples fully preserve the

inherent physical and chemical characteristics of the biomole-

cules. The samples analyzed are typically enriched with NMR-

active isotopes by incorporating 13C-enriched precursors like
13C-glucose, 13C-maltose, and 13CO2 (for plants), as well as
15N-labeled amino acids and salts.17,18 Occasionally, selective-

labeled precursors are used to simplify the spectra and track

the biosynthesis of macromolecules.19 Deuterated fatty acids

can also be incorporated for determining the phospholipid profile

in cellular membranes.20 The collected material can be directly

placed into a magic-angle spinning (MAS) rotor, which can

hold approximately between 1 mg (for a 0.7 mm diameter) and

100 mg (for a 4 mm diameter) of material, depending on the re-

quirements of the NMR experiment.

A versatile toolbox is available for studying various aspects

of biomolecules in cell walls and cellular samples, including mo-

lecular composition, structural variations, dynamical distribu-

tion, water association, and sub-nanometer packing.13,14,21

While 1D spectra are useful for quick screening, high-resolu-

tion structural characterization often mandates the use of 2D

and 3D homonuclear (such as 13C–13C) and heteronuclear

(such as 15N/1H-13C) correlation experiments. These techniques

rely primarily on 13C detection, which provides excellent spec-

tral dispersion to differentiate many magnetically inequivalent

sites.22–27 However, recent advancements in 1H detection
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methods have also yielded valuable insights into the structure

and packing of polysaccharides and proteins in plants, fungi,

and bacteria.28–31 The success of these studies has been facili-

tated by fast-to-ultrafast magic-angle spinning techniques, with

MAS rotation frequencies ranging from 60 to 110 kHz, where a

higher level of deuteration and the presence of more dynamic

molecules allow for reduced reliance on high MAS frequencies.

Dynamic nuclear polarization (DNP) is another significant

advancement that has greatly expanded the capabilities of

ssNMR in the structural characterization of macromolecular

complexes.32–34 In MAS-DNP, the polarization of unpaired elec-

trons in stable biradicals is transferred to 1H and subsequently to

other nuclei of interest, resulting in enhanced sensitivity.35 The

prominent biradicals used extensively in structural studies

include AMUPol and the recently developed AsympolPOK.36,37

The 600 MHz/395 GHz MAS-DNP instrument strikes a favorable

balance between spectral resolution and sensitivity enhance-

ment, and a 30- to 80-fold boost can be easily achieved for

cellular samples. This breakthrough has effectively overcome

the sensitivity limitations of NMR, enabling the use of small sam-

ple quantities, which is particularly valuable for difficult-to-repli-

cate samples, exploring lowly populated molecules or macro-

molecular complexes embedded in bulk structures, and even

characterizing fully unlabeled biosamples without the need for

isotopic enrichment.38–43

PECTIN METHYLATION INFLUENCING PLANT PRIMARY
CELL WALL STRUCTURE

Themechanical roles of cellulosemicrofibrils, hemicellulose, and

pectin in plant primary cell walls have been a topic of ongoing

debate for many decades.44 One prevailing model suggests

the existence of a tethered polymer network, where a single

hemicellulose strand (e.g., a xyloglucan) could simultaneously

bind to multiple cellulose microfibrils and hold them together to

form a load-bearing network.45,46 Pectin is an acidic polymer

regulating wall porosity, pH, and ionic balance, and is influencing

cell expansion and differentiation.47 However, pectin is often

considered as a separate component that forms a gel-like ma-

trix, providing reinforcement to the cellulose-hemicellulose

network. This perspective was primarily based on biochemical

findings, wherein the vast majority of pectin is extractable by

strong alkali, and the acidic pectin backbones do not bind to

cellulose in vitro.48 A significant advancement brought in by

ssNMR is the identification of the interaction between pectin

and cellulose within intact primary plant cell walls.

Pectins are partially interconnected complexes of polysac-

charides and proteoglycans.47,49,50 The major domains include

homogalacturonan (HG), rhamnogalacturonan-I (RG-I) with

branched arabinan and galactan, as well as RG-II.51 By employ-

ing ssNMR, even with a simple 1D 13C spectrum, it is possible to

discern various specific chemical sites within the galacturonic

acid (GalA) residues that comprise HG, the rhamnose (Rha) res-

idues that alternate with GalA along the RG-I backbone, as well

as the arabinan sidechains (Figure 1A).52 Such spectral resolu-

tion forms the basis for tracking the intermolecular cross peaks

between major pectin domains and cellulose microfibrils using

2D 13C–13C correlation experiments.53,54 However, RG-II, which

is less prevalent and structurally more intricate compared to HG
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and RG-I, has yet to be investigated using high-resolution

ssNMR techniques.

Previously, it was believed that the pectin backbone and cel-

lulose were physically separated entities, but the numerous

pectin-cellulose cross peaks identified by ssNMR have unam-

biguously revealed their close spatial proximity in the cell

wall.54,55 The new insight has contributed to a paradigm shift in

our understanding of the architecture of the primary cell

wall,44,56 and comprehensive overviews of these ssNMR studies

can be found in multiple recent reviews.14,57 Despite these ad-

vancements, the precise function of the packing between pectin

and cellulose in supporting the structure of the cell wall remains

unclear. Recently, mesoscale coarse-grained molecular dy-

namics (CGMD) simulations conducted on onion epidermal cell

walls have shed some light on this matter.58 The noncovalent in-

teractions between multiple cellulose fibrils were found to be the

primary factor determining the mechanical properties of the cell

wall. Notably, the sliding of two aligned cellulose microfibrils

against each other was identified as a significant contributor to

the plasticity of the cell wall. In contrast, hemicellulose and

pectin were suggested to play more indirect roles, potentially

by influencing the arrangement of cellulose within the cell wall.58

Growing evidence emphasizes the significance of HG methyl-

ation in influencing the organization of the cell wall. At first

glance, this may appear contradictory, as methylation only in-

volves localized chemical modifications to the carboxyl groups

of GalA residues,59,60 while the rearrangement of cell wall poly-

mers happens on the nanoscale. An emerging concept is that

methylation alters the charge and physicochemical properties

of HG, and may induce repulsion among HG chains, thereby

providing the force to expand the interfibrillar space between

cellulose microfibrils.61 This mechanism has been proposed as

a potential regulator of cell expansion and shaping, alongside

the more widely accepted turgor-driven mechanism.

Dupree, Hong, and coworkers have shown that pectin methyl-

ation can change the conformational structure, interactions, and

dynamics of polysaccharides in the primary cell wall.62 They

compared the pectin structure in wild-type Arabidopsis with

that of the gosamt1 gosamt2 mutant, which had a reduced de-

gree of methyl esterification in HG. The mutant exhibited an

increased abundance of HG in a structure known as the 2-fold

screw conformation (21), with its C6 chemical structure as

-COO- in this sample (Figure 1B). These observations match

the characteristics of the egg-box structure that refers to the

cross-linking of two anionic GalA units that joined two adjacent

HG chains by a Ca2+ ion. The reduced methyl esterification in

the mutant promoted the formation of egg-box clusters and

enhanced HG aggregation.

Conversely, the content of the methylated -COOCH3 motif in

the 3-fold screw conformation (31) was reduced in the gosamt1

gosamt2 mutant.62 The double mutant also exhibited strong

signals indicating a reduction in the chain length of HG, allowing

the identification of signals from the reducing ends of the GalA

units in both a- and b-configurations. Importantly, this study

represents the first successful application of ssNMR to eluci-

date the detailed structural characteristics of HG in muro,

providing direct experimental evidence supporting the widely

accepted model of the pectin egg-box structure within the plant

cell wall.
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Figure 1. Pectin structure and its effect on primary plant cell wall
(A) Representative 1D 13C ssNMR spectra with resolvable signals associated with pectin and cellulose structural motifs. Carbon numbers are shown for key
sugar units.
(B) Selected regions of 2D 13C–13C spectra resolving the conformation and methylation state of GalA units in Arabidopsis pectin. 2-fold (21) and 3-fold (31) screw
conformations of HG displaying distinct chemical environments at the carbonyl site. An egg-box model is shown to depict two cross-linked HG chains.
(C) Structural rearrangement of the cell wall in Arabidopsis qua2/tsd2 mutant. Figures 1A and 1C adapted with permission from Kirui et al. Carbohydr. Polym.
(2021). Figure 1B adapted with permission from Temple et al. Nat. Plants (2022).
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NMR data showed that HG methylation has an impact on the

polysaccharide organization in the cell wall. Pectin backbones

showed larger dipolar order parameters and stronger interac-

tions with cellulose in the gosamt1 gosamt2 mutant.62 These

changes in cell wall structure were found to be associated with

impaired polarized growth in the double mutant. Interestingly,

these findings appear to contrast with recent observations

from other studies using different mutants and experimental

conditions. An increase in pectin methylation is often accompa-

nied by stronger pectin-cellulose interactions and impaired plant

growth as reported in ssNMR analyses of Arabidopsis primary

cell walls and focused on mutants that produced shorter HG

chains, cell walls with pH-alteration, or segments along the inflo-

rescence stem.63–65

The situation becomes more intricate due to another recent

study involving two allelic mutants (qua2 and tsd2) of a pectin
methyltransferase.52 These mutants exhibit similar cell wall

composition and pectin methyl esterification levels as the wild-

type sample but, surprisingly, display stiffer pectin and stronger

interactions with cellulose (Figure 1C). Atomic force microscopy

(AFM) and field emission scanning electron microscopy (FESEM)

revealed a decrease in cellulose bundling in both mutants,66 and

the more dispersed microfibril arrangement should have facili-

tated the extensive interactions as observed by ssNMR analysis.

These findings highlight how ssNMR can serve as a valuable

tool to bridge the knowledge gaps between the chemical struc-

ture of carbohydrates, plant biology, and cell wall organization.

However, pectin’s role in cell wall structure remains enigmatic.

It is now evident that pectin methylation can exert diverse effects

on the cell wall structure, and there is no universal principle that

applies to all scenarios. It is likely that the structural function of

pectin is indirect, influencing the arrangement of cellulose
Structure 31, November 2, 2023 3
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Figure 2. Macrofibril structure and lignin-carbohydrate interface
(A) Structural features of polysaccharides in plant secondary cell walls resolvable by ssNMR.
(B) Structural view of the aromatic-carbohydrate packing interface in grass species, hardwood, and softwood.
(C) Best fit of NMR data collected on spruce secondary cell walls into a macrofibril. A local cellulose microfibril with two domains of glucan chains (light and dark
blue) is shown with 2-fold xylan (Xn2f) and galactoglucomannan (GGM) attached.
(D) Illustration of loosely associated water and tightly bound water in pine secondary cell wall. Figures 2A and 2B adapted from Kirui et al. Nat. Commun. (2022).
Figure 2C modified from Terrett et al. Nat. Commun. (2019). Figure 2D adapted from Cresswell et al. Biomacromolecules (2021).
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microfibrils and hemicellulose within the cell wall, which requires

further investigation.

LIGNIN-CARBOHYDRATE PACKING IN SECONDARY
PLANT CELL WALLS

Within the secondary cell wall, the coalescence of multiple cellu-

lose microfibrils occurs frequently, e.g., an illustration of a

3-microfibril bundle is given in Figure 2A, which is accompanied

by the association of hemicelluloses (xylan and galactogluco-

mannan) and lignin to form larger macrofibrils.67,68 Inspired by

the seminal work of Dupree and colleagues,69 many multidimen-

sional ssNMR studies have been conducted in the past seven

years to unravel the molecular architecture of secondary plant

cell walls. These studies have led to two significant revisions in

our understanding of lignocellulosic biomass. First, the chemical

composition and conformational structure of xylan dictate its

binding specificity within the cell wall.70,71 Second, the lignin-

carbohydrate interface is stabilized by electrostatic interactions,

with lignin primarily associated with the non-flat domains of

xylan. However, in certain cases, lignin can also interact and

co-localize with the xylan-coated cellulose microfibrils as the

secondary target.72,73

In dehydrated environments, such as the dried stem of Arabi-

dopsis, xylan exhibits a broad range of helical screw conforma-

tions that can be monitored through the continuous band

observed in its C4 signals in ssNMR spectra.69 In well-hydrated
4 Structure 31, November 2, 2023
cell walls, including those of Arabidopsis, spruce, maize, switch-

grass, rice, andBrachypodium, xylan preferentially adopts either

2-fold or 3-fold helical screw conformations, resulting in two

distinct C4 signals.70,72–74 This is illustrated by the flat-ribbon

and non-flat structures depicted in Figure 2A. Notably, a contin-

uous distribution of xylan helical screw conformation was even

observed in hydrated hardwood materials, such as eucalyptus

and poplar, which is likely induced by factors such as lower hy-

dration levels and/or molecular crowding within hardwood

stems.73 In thecaseof sorghum, the secondary cellwall is primar-

ily composed of 3-fold xylan conformations,75 while inBrachypo-

dium, both the leaf and root showed two xylan conformers, but

the stem shows a continuous range of conformations.

The presence of a 2-fold flat-ribbon structure is relatively un-

common and was found to be facilitated by xylan’s deposition

onto the smooth surface of a cellulose microfibril.76 Moreover,

it has been discovered that an evenly distributed pattern of sub-

stitutions (e.g., by glucuronic acid or arabinose sidechains) along

the xylan chain is crucial for maintaining this flat-ribbon structure

and promoting its interaction with cellulose.71 This also explains

why sorghum lacks this conformation as xylan is frequently and

irregularly substituted by arabinosyl residues. On the other hand,

the 3-fold xylan plays a dominant role in carbohydrates’ interac-

tions with lignin, primarily through the polar functional groups,

which highlights the significance of electrostatic interactions in

stabilizing the interface between lignin nanodomains and carbo-

hydrates (see the grass model in Figure 2B).72
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The molecular architecture of lignin-carbohydrate interactions

varies across different plant species (Figure 2B). Comparisons

between grasses, hardwoods, and softwoods have revealed a

gradual decrease in the domain size and polymer separation be-

tween lignin and polysaccharides. Lignin-cellulose packing inter-

actions, which were found to be relatively limited in grass sam-

ples, also became abundant in woody plants.73 During the

analysis of the sparsely populated biopolymer interface, which

exhibits structural deviations from the overall equilibrium state

of the entire cell wall, ssNMR experiments employing spectral

editing (e.g., the selected polarization of lignin aromatics or me-

thoxy group or xylan acetyls) selection and DNP enhancement

have proven to be instrumental.77,78

Dupree and coworkers successfully fit the ssNMR data

on molecular fraction, polymer conformation, and polymer

spatial proximity into a macrofibril observed under Cryo-SEM

(Figure 2C).74 This large bundle that is tens of nanometers across

accommodates�50 elementary microfibrils, each of which con-

sists of 18 glucan chains. SsNMR analysis uncovered two

distinct conformations for galactoglucomannan (GGM), reminis-

cent of the functional conformations in xylan. It was found that

GGM undergoes conformational changes when bound to cellu-

lose in a semi-crystalline manner. Some of the bound GGMs

and 2-fold xylan molecules can attach to the surface of the

same microfibril, while the other GGMs contribute to the matrix

alongside 3-fold xylan. The entire carbohydrate core is envel-

oped by a lignin layer, completing the molecular architecture of

the microfibril assembly.

Water is another important structural component of the sec-

ondary cell wall, and high-temperature (105�C) oven-drying

can induce irreversible alteration to the structure of Monterey

pine (Pinus radiata), even after subsequent rehydration.79

SsNMR analysis of the rehydrated sample revealed a tighter

packing between xylan and cellulose, along with the separation

of somemannan into the mobile phase, adopting a conformation

similar to that observed in solution. These results support the hy-

pothesis that water plays a crucial role in mediating the packing

interactions between xylan and cellulose (Figure 2D). Impor-

tantly, this study provides direct evidence of the irreversible

change in biomass ultrastructure caused by harsh drying pro-

cedures. It should be noted that another ssNMR study has

demonstrated fully reversible changes of spruce and poplar

through the process of lyophilization and rehydration.73

Li, Kang, Yelle, and colleagues have utilized ssNMR to inves-

tigate the perturbation of lignin linkages and lignin-polysaccha-

ride packing by termite digestion.80 This was accomplished by

feeding 13C-labeled sapwood sections of Canadian poplar (a

natural hybridPopulus3 canadensis), a hardwood, to a phyloge-

netically higher termite species (Nasutitermes) and Monterey

pine, a softwood, to a lower termite species (Cryptotermes).

The abundance of different lignin linkages and lignin-polysac-

charide interactions in the termite diet and feces was assessed

using 2D 13C–13C radio frequency-driven recoupling (RFDR)

and long-range proton-driven spin diffusion (PDSD) spectra.

Both termite species were found to effectively dissociate the

electrostatic interface between lignin and polysaccharides, but

only the lower termite species can perturb the structure of the re-

sidual lignin. This study highlights the remarkable capability

of ssNMR spectroscopy in examining the structural changes
occurring in lignocellulosic materials, and the same approach

can be applied to investigate biomass degradation by various

biological agents such as white/brown-rot fungi, as well as in in-

dustrial processes.81

DYNAMIC STRUCTURE OF FUNGAL CELL WALL:
CHALLENGE AND OPPORTUNITY

Stark and colleagues have been at the forefront of utilizing

ssNMR for nearly two decades to study melanin deposition

and its interactions with cell wall polysaccharides in Crypto-

coccus and Saccharomyces species.19,82–85 Recent ssNMR in-

vestigations on Aspergillus and Schizophyllum, with a focus on

the cell wall structures, were largely inspired by these studies,

and were built upon research strategies employed in plant

cell wall characterization, albeit with methodological adapta-

tions.57,86 However, an unexpected problem that significantly

impeded progress was the dynamic nature of fungal cell walls,

characterized by their remarkable ability to adapt to varying

growth conditions and environmental contexts.2,87 These micro-

organisms exhibit an impressive capacity to compensate for the

absence of specific polysaccharides through complex biosyn-

thetic reactions, thereby generating a structurally intact cell

wall.88 Such adaptability, unlike their plant counterparts, chal-

lenges the notion that certain cell wall polysaccharides, such

as cellulose and pectin in primary cell walls, are essential. The

dynamic structural changes in fungal cell walls not only enable

the survival and adaptation of thesemicrobes to diverse environ-

ments but also present technical barriers to our fundamental un-

derstanding of these organelles and the development of anti-

fungal medications to combat invasive infections.89 As a result,

it is crucial to carefully monitor the status of the samples and

ensure the reproducibility of the culture conditions. In many

cases, it becomes necessary to prepare fresh batches of sam-

ples specifically for lengthy experiments. Complications further

arise from the distinct composition and assembly of bio-

macromolecules in different fungal species and the vast array

of mutant strains found in nature. Therefore, it is crucial to first

identify the conserved features of fungal cell walls and elucidate

the structural functions of their key polysaccharides before

investigating the variations across the wide spectrum of fungal

species and strains.

MORPHOTYPE-DEPENDENT STRUCTURE OF
ASPERGILLUS CELL WALLS

During the transition of morphotypes in the fungal life cycle, the

cell wall undergoes significant changes in its nanoscale

morphology and molecular composition.2,90 These structural

transformations play a vital role in many biological processes,

such as spore germination, hyphal growth, and sporulation. In

the case of A. fumigatus, the fungus forms asexual hydrophobic

spores called dormant conidia (dorC) on a specialized hyphal

structure called conidiophore.1 In immunocompromised pa-

tients, when the inhaled conidia reach the alveoli in the lungs

within 4–6 h, the germination process takes place. Germination

involves the uptake of water by the conidia, resulting in their

swelling and transformation into swollen conidia (swoC). Subse-

quently, the swollen conidia germinate (gerC) into short hyphae
Structure 31, November 2, 2023 5
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Figure 3. NMR-restrained structural models of fungal cell walls
(A) Comparative views of mycelial cell walls in the parental strain (left) and chitin-deficient mutant (right) of A. fumigatus.
(B) Dormant and germinating conidial cell walls of A. fumigatus.
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known as germ tubes.1 Following germination, the growth of hy-

phae initiates, leading to the formation of a colony. This mycelial

colony represents an aggregated form of hyphae that invade the

pulmonary tissues, causing a life-threatening disease known as

aspergillosis.90

SsNMR analysis of the intact Aspergillusmycelium offers valu-

able insight into the structural organization of the cell wall during

the vegetative growth of the fungus in the lungs. These living

fungal cells exhibited high-spectral resolution, enabling the dif-

ferentiation of various conformers from six major types of fungal

polysaccharides, including chitin, chitosan, a-1,3-glucan, three

types of b-glucan, as well as galactomannan (GM), and galacto-

saminogalactan (GAG) (Figure 3A).86,91 The partially crystalline

chitin has a narrow linewidth of 0.5–0.7 ppm, whereas the

plant counterpart, cellulose microfibrils, shows a broader line-

width of 0.7–1.0 ppm on high-field magnets.92 The mobile

molecules present in the fungus and the plant pectin have com-

parable linewidths of 0.2–0.5 ppm.93 Similar to the polymorphic

structure observed in plant cellulose,92 chitin also exhibits high

polymorphism. The structural arrangement of chitin in fungi is

predominantly aligned with the a-allomorph,94 characterized

by an antiparallel packing of chains.95,96 Through ssNMR anal-

ysis, it was discovered that the rigid core of the cell wall com-

prises a-1,3-glucan, b-glucan, and chitin.

Of particular surprise was the identification of a-1,3-glucan’s

structural function, as it was previously considered insignificant
6 Structure 31, November 2, 2023
in the cell wall assembly, akin to the underappreciated role of

pectin in primary plant cell walls.97 Unlike the highly mobile na-

ture of pectin in plants, a-1,3-glucan was found to be the most

rigid polysaccharide in Aspergillus fumigatus mycelia. It forms

a tightly packed, dehydrated core through extensive physical in-

teractions with chitin. This finding was further strengthened by

the observation that a-1,3-glucans are crucial to the stiffness

of the cell wall in chitin-deficient mutant (Figure 3A). Moreover,

a-1,3-glucan has diverse distribution, with its physical presence

in both the mobile and rigid domains and chemical existence in

both the alkali-soluble and insoluble fractions, as revealed by a

combined chemical and NMR approach.91

On the other hand, b-glucans in fungi, similar to xyloglucan in

plant primary cell walls, have been proposed to play a crucial role

in cross-linking. Chemical analysis has identified the presence of

a small fraction of covalently linked mannan-b-1,3-glucan-chitin

complex in Aspergillus.87 The b-glucans encompass diverse

linkages, existing as linear b-1,3-glucan, branched b-1,3/1,6-

glucan, and terminal b-1,3/1,4-glucan,90 which has not been fully

characterized by ssNMR so far. However, structural analysis of

b-glucans has shown that these molecules are essential for re-

taining water in the cell wall and contribute to the formation of

a hydratedmatrix. Outside of this inner domain, there is a surface

shell enriched with highly mobile glycoproteins, GM and GAG.91

Loquet and colleagues reported the evolution of the Asper-

gillus fumigatus conidial cell wall by examining the structure of
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dorC, which was the starting material, as well as swoC and gerC,

which were prepared by incubating dorC by additional 5 h and

8 h, respectively.98 Compared to dorC, the swoC exhibited

isotropic growth to double its cellular size, based on which the

gerC cells further underwent polarized growth, leading to the for-

mation of germ tubes. The polysaccharides present in the rigid

fractions of A. fumigatus conidia cell walls were found to be

consistent with those of mycelial cell walls, containing chitin,

a-glucan and b-glucan.98 Another study published almost at

the same time also reported highly conserved carbohydrate

cores in both mycelia and conidia cell walls but using unlabeled

A. fumigatus as enabled by the sensitivity-enhancement of

MAS-DNP.99

In the conidial cell wall, the ratio of a-glucan to b-glucan was

approximately 1:3 in dorC and gerC, but became almost equal

in swoC (Figure 3B), suggesting a less stable cell wall composi-

tion required for germination.98 Both a-glucan and b-glucan ex-

hibited increased hydration levels in swoC and gerC compared

to dorC. Interestingly, a-glucan showed high-hydration levels

in all conidia cell walls,98 whereas it was poorly hydrated in

mycelia cell walls,72 indicating differences in their structural or-

ganization. While the chitin content remained the same in the

rigid portions of all three cell walls, chitin exhibited a noticeable

decrease in both water-contact and structural polymorphism in

gerC. This observation can be explained by amodel where chitin

becomes deeply embedded in the inner core and undergoes

phase separation from glucans during the germinating stage

(Figure 3B).98 In addition, the presence of GAG was detected

by ssNMR in both swollen and germinating conidia, but not in

dormant conidia, where its biosynthesis has yet to begin. This

study demonstrates the capability of cellular ssNMR to effec-

tively uncover the structural reorganization of the fungus during

the transition between morphotypes.

Triglyceride signals were also identified in the mobile phase of

A. fumigatuscells.98 Inother fungal species, suchas themelanized

C. neoformans and S. cerevisiae spore cell wall, triglyceride has

been identified by ssNMR as a potential building molecule of

stress-resistant cellwalls.100Thebiological relevanceof thismole-

cule inA. fumigatus and its location (e.g., as a cell wall component

or an intracellular molecule) requires careful evaluation.

CELL WALL ARCHITECTURE OF SCHIZOPHYLLUM
COMMUNE

Baldus and coworkers conducted two ssNMR investigations of

Schizophyllum commune mycelia.28,101 The first study involved

the analysis of sequentially digested cell walls, progressively

removing molecules from the cell wall.101 The rigid domain of

the cell wall is composed of chitin and b-1,3/1,6-glucan, poten-

tially linked together, as well as a-1,3-glucan and polymeric

fucose (Figure 3C). The mobile domain contains terminal hex-

oses included in a- and b-linked glucans. Mannose residues

were also identified in the mobile phase, at least partially incor-

porated in mannosylated proteins. Using proton-detection

methods and ultrahigh field magnets (1.2 GHz), the team further

examined the binding sites of metals and antimicrobial pep-

tides.28 At a low-ion concentration of 0.74 mM Cu(II), the para-

magnetic relaxation enhancement (PRE) effect revealed signal

quenching at the primary targets, which were mainly proteins.
However, at a higher ion concentration of 18.5 mM, Cu(II) ions

could penetrate into the cell wall region with b-1,3/1,6-glucans.

Proton-detection methods were also employed to understand

the binding of many other micronutrients, such as Ca2+, Mg2+,

and anions, to the S. commune cell wall.102,103

Additionally, the antimicrobial peptide cathelicidin-2, which in-

hibits S. commune growth, was found to primarily bind to cell

wall proteins.28 This was demonstrated through chemical shift

perturbation (CSP) observed in protein backbone Ca sites and

the disappearance of signals from the sidechains of charged

amino acids. Interestingly, the signals of GalN/GalNAc were

also affected by the peptide.28 This observation is intriguing as

cathelicidin-2 is typically positively charged with a theoretical

isoelectric point (pI) in the range of 10–12 depending on the origin

of the peptide.104 At the same time, GalN can exist as cationic

residues with an -NH3
+ group under the pH of the fungal culture.

The unidentified mechanisms underlying the association be-

tween the antimicrobial peptide andS. commune cell wallsmight

inspire future studies.

INTEGRATING NMR RESTRAINTS WITH OTHER
EXPERIMENTAL APPROACHES

Chemical analysis, ssNMR, diffraction methods, imaging tech-

niques can complement each other to complete the understand-

ing of cell wall ultrastructure. Each of these methods relies on

distinct physical and chemical principles, offering unique insights

into various structural aspects at different length scales. Locally,

ssNMR has been combined with chemical assays and sugar an-

alyses to confirm resonance assignment and provide detailed in-

formation on the composition and linkage patterns of carbohy-

drates.105 However, the cross-linking between polymers and

the extractability as probed by chemical analysis does not

directly correlate with the physical packing as investigated by

ssNMR.97 For example, the majority of pectin and a-1,3-glucan

are highly extractable by hot alkali, but they are both tightly

associated with the crystalline core of the corresponding cell

wall, cellulose in the plant and chitin in the fungus. And it has

always been overlooked that a portion of pectin and a-1,3-glucan

can never be fully isolated due to their physical entrapment by

microfibrillar components.55,91 Similarly, the analysis of lignin

also faces challenges in establishing consistency between

ssNMRand themorewidely used liquidNMR.106–108 Additionally,

when it comes to polymer dynamics, it is not possible to directly

combine NMR-reported parameters such as correlation time,

relaxation time constants, or dipolar order parameters with

values obtained from other techniques like persistence length.65

Diffraction methods and imaging techniques are valuable for

providing structural information at nanoscale or larger length

scales. Consequently, ssNMR data can complement these tech-

niques by offering atomic-to-nanometer structural informa-

tion.109 As we discussed earlier, this strategy has been applied

to rationalize the organization of spruce microfibril.74 Moreover,

a combination of MAS-DNP and cryo-electron tomography

(CryoET) has been employed to examine the structure of

in vitro synthesized cellulose fibrils, revealing that they consist

of two wrapped filaments fitting into an 18-chain microfibril.110

Cryo-electron microscopy methods have also been employed

to examine the fiber arrangement in the cell wall111–113 and the
Structure 31, November 2, 2023 7
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structure of polysaccharide synthases.114–116 Another example

is the challenge of distinguishing proteins from different sources

(e.g., cell walls, membrane proteins, and intracellular sources)

using ssNMR alone. In such cases, confocal microscopy and

atomic force microscopy (AFM) have been used to investigate

the assembly of RodA rodlets in Aspergillus, which were found

to interact with melanin on the cell surface of DorC while swoC

and gerC did not support rodlet formation.98 However, caution

is necessary when attempting to bridge the findings obtained

from different approaches.

CONCLUSIONS AND PERSPECTIVES

Significant progress hasbeenmade in applying ssNMRandother

structural methods to unravel the complex structure of polysac-

charides and associated biomacromolecules in plant and fungal

cell walls. However, there are still numerous unanswered struc-

tural questions. For instance, the function of pectin in plant cell

wall mechanics remains unknown, the resolution of lignin by

ssNMR is insufficient, the role of GGM (galactoglucomannan)

is not fully understood, and the identification of lignin-carbohy-

drate linkages117 in muro remains challenging. Moreover, the

fungal cell wall is even less explored, with many structural com-

ponents, such as exopolysaccharides like glucuronoxylomannan

(GXM) and galactoxylomannan (GalXM) in Cryptococcus cap-

sules and b-1,6-glucan and phosphomannan inCandida sp., still

requiring investigations. Understanding the mechanisms of cell

wall remodeling in response to stress is also crucial. Recent

research hasunveiled that the halophilic fungusAspergillus sydo-

wii enhances the hydrophobicity and stiffness of its cell wall to

resist osmotic pressure in hypersaline environments.118 Similar

changes have been observed in A. fumigatus during adaptation

to internal stress caused by carbohydrate-deficiency and

external stress such as antifungal treatment with caspofungin

(unpublished results by Dickwella Widange et al.). It is essential

to validate if these cell wall adaptations are universal features

across various species during adaptation. Furthermore, high-

resolution ssNMR techniques have been employed to address

structural challenges in other organisms. An important applica-

tion is the quantification and compositional analysis of carbohy-

drate components in algal cells, bacterial cell walls, and bio-

films.31,119–122 As ssNMR technology continues to evolve and

our understanding of polysaccharide structure and cell wall

assembly expands, it is nowopportune to tackle important struc-

tural problems in the years to come.
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